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Chapter 1

Introduction

This thesis investigates Bayesian inference over time series models with the emphasis

put on applications in economics and finance. We note, however, that the methods

developed are general and can be employed in various fields. We adopt simulation-based

techniques which are necessary in any nontrival problem in this setting. The main

motivation behind the presented research is to increase the efficiency and accuracy of

these computationally intensive methods in several different contexts. One of the main

topics addressed is efficient and precise risk estimation, or rare event analysis. Another

problem studied below is the efficiency of various sampling algorithms, in particular

importance sampling (IS) and Markov chain Monte Carlo (MCMC) algorithms. Finally,

we address the issue of forecasting, from a single model as well as from a combination

of models.

A Bayesian approach provides a flexible, coherent and convenient framework for the

analysis of time series for a number of reasons, see Robert (2007, Ch. 11) for “a defence

of the Bayesian choice”. Of these, one of the most relevant in practice is capturing of

parameter uncertainty. Treating parameters as random variables and inference based

on posterior distributions allows us to easily deal with the task of uncertainty quan-

tification. This is of particular importance in the context of risk analysis, where the

objective is precise estimation of rare events and where even a small degree of incor-

rectness might have tremendous and serious consequences (Chapters 2 and 3). Another

advantage of a Bayesian approach is that it highly facilitates dealing with complex data

and combining information stemming from different sources (Chapters 4 and 5). A re-

lated aspect is that standard Bayesian methods can be easily and naturally extended

to develop hybrid approaches or schemes exceeding typical inference problems to allow

e.g. for built-in optimisation elements (Chapters 3, 4 and 5).
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CHAPTER 1. INTRODUCTION

1.1 Time series

The problem of identification of properties of processes evolving in time to characterise

the observed patterns and to make predictions about their future realisations is ubiq-

uitous in science. In economics and finance time series analysis has a well-established

position and it comes naturally given the studied phenomena such as business cycle

or stock market trends. There have been several approaches to investigate time-series,

depending on the research area, e.g. signal processing approach (including spectral

analysis) in physics and engineering; function mapping approach (including Gaussian

processes and neural networks) in machine learning; statistical and econometric ap-

proach prevailing in economics and finance. We adopt on the latter methodology as it

provides a useful explanation of the nature of the modelled processes and allows for a

structural interpretation of the estimation results.

As far as the statistical analysis of time series is concerned, we focus on time-varying

parameter models, which following Cox (1981) can be grouped into two classes of

models with distinct advantages and disadvantages: observation-driven models and

parameter-driven models. The former specify model parameters as deterministic func-

tions of observations allowing for a perfect one-step-ahead predictability of the param-

eters given the current information set. The latter allow for idiosyncratic innovations

governing the parameters dynamics and can be represented as state space models, see

Durbin and Koopman (2012) for an extensive exposition of the state space method-

ology. In consequence, the likelihood of an observation-driven model is available in

closed form while the likelihood of a parameter-driven model is typically analytically

intractable. This makes observation-driven models easier to work with and faster to

estimate but also gives extra flexibility and an intuitive structure to parameter-driven

models. Well known examples of observation-driven models in econometrics include

the generalized autoregressive conditional heteroskedasticity (GARCH) model of En-

gle (1982) and Bollerslev (1986) as well as the more recent generalized autoregressive

score (GAS) models of Creal et al. (2013); a quintessential parameter-driven model

in econometrics is the stochastic volatility (SV) model of Taylor (1994), with other

important instances being the dynamic factor model of Geweke (1977), see also Stock

and Watson (2002), and the factor-augmented vector autoregression (FAVAR) model

of Bernanke et al. (2005) and Stock and Watson (2005). Given distinct merits of both

classes we do not see it necessary to limit our attention to one certain class in advance.

Depending on the main idea and the goal of each chapter we consider a specification

which is more natural and convenient in the given context.

2



1.2. BAYESIAN INFERENCE

1.2 Bayesian inference

As mentioned above, we adopt a Bayesian approach to statistical inference by which

we understand estimation and prediction from a given model (as well as model com-

parison and selection). We refer to Robert (2007) for an in-depth exposition of the

Bayesian principles including philosophical foundations of this inference paradigm and

to Gelman et al. (2013) for a more practical treatment adhering to common-sense mer-

its of Bayesian thinking. It is worth mentioning that Gelman et al. (2013) understand

Bayesian methods more broadly, as consisting of three steps: (1) model building, (2) in-

ference conditional on the model, (3) model checking. To our view their points (2) and

(3) both belong to the inference problem, while step (1) does not necessarily need to

be related to “Bayesian” statistics, in the sense that Bayesian reasoning can be applied

to any model (even to a non-statistical one). The strength of the Bayesian paradigm is

that its basic principles and rules are universal, regardless of the exact model specifica-

tion, in particular the choice between observation-driven and parameter-driven models

in our case. In this work we are less concerned with the modelling stage of data anal-

ysis but rather with developing accurate and efficient techniques to enhance Bayesian

inference over existing models.

The key principle of Bayesian statistics is conditioning on the observed data y, which

is formalised by the likelihood principle1. Hence, the observed data are seen as fixed,

which stays in contrast to classical statistics treating the data as random realisations of

a sampling process. On the other hand, Bayesian statistics sees the model parameters

(and all unobserved quantities) θ as random variables and makes statements about

them in terms of probability distributions – differently than frequentist reasoning which

assumes that parameters are fixed. Further, Bayesian analysis allows for incorporating

prior beliefs about these unknown quantities, e.g. expert knowledge or information

stemming from complimentary sources – but also lack of any knowledge – into the

inference process via the prior distribution p(θ). After recording the data, these initial

beliefs are updated using the likelihood p(y|θ), or the data distribution, to form the

posterior distribution p(θ|y). This step is formalised by applying the Bayes’ theorem

1The likelihood principle states that for inference on an unknown parameter all of the evidence from
any observation is entirely contained in the likelihood function of this observation, see Robert (2007,
p. 15–16) and Gelman et al. (2013, p. 6).

3



CHAPTER 1. INTRODUCTION

to obtain the relationship between these three distributions as follows

p(θ|y) =
p(y|θ)p(θ)∫
p(y|θ)p(θ)dθ

(1.2.1)

∝ p(y|θ)p(θ). (1.2.2)

The denominator of (1.2.1) is called the marginal likelihood and is a normalising con-

stant (as it does not depend on θ). It is often analytically intractable and even hard

to estimate, hence one typically needs to use the unnormalised posterior distribution

(1.2.2), also known as the kernel of the posterior distribution. The posterior distribu-

tion is then used to obtain estimators of θ, which in the Bayesian setting are formally

represented as integrals (see Robert and Casella, 2004, Ch. 1.2). This implies the as-

sociated computational problem of integration, often in high dimensions, which turns

out not analytically solvable in many practical applications. For this reason most of

Bayesian analysis is concerned with simulation-based computations, which frequently

are computationally intensive.

1.3 Simulation methods and numerical efficiency

The Bayesian paradigm is conceptually clear and intuitive however it was not until

the “Markov chain Monte Carlo revolution” in the 1990s that it has gained broader

popularity, see Robert (2007) and Robert and Casella (2011). Prior to that Bayesian

analysis was mostly limited to the use of conjugate2 prior distributions (Green et al.,

2015). It is crucial to point out that even though the popularisation of the MCMC

methods in statistics and econometrics has triggered the growing acceptance and usage

of Bayesian methods in these fields, current Bayesian computations are not necessarily

limited to MCMC algorithms. Alternatives to MCMC include IS (Hammersley and

Handscomb, 1964), sequential Monte Carlo (SMC, Doucet et al., 2001), approximate

Bayesian computation (ABC, Marin et al., 2012) or variational Bayes (VB, Blei et al.,

2017). All these methods but the last one are sampling-based, predominantly adopting

Monte Carlo (MC) methods. A detailed treatment of MC techniques is beyond the

scope of this chapter and we refer to Robert and Casella (2004) for a comprehensive

examination of this broad area as well as to Green et al. (2015) for a review of the

history and the current state of Bayesian computations.

2A family of prior distributions is said to be conjugate for the likelihood function if the resulting
posterior distribution belongs to this family. Conjugacy allows for obtaining the posterior distribution
simply by updating of the hyperparameters of the prior distribution.

4



1.3. SIMULATION METHODS AND NUMERICAL EFFICIENCY

Amongst the above mentioned methods for Bayesian computations IS deserves a special

mention, as we argue below. IS is a relatively old technique dating back to Kahn and

Marshal (1953) and Marshall (1956), with a long tradition in econometrics originating

from Kloek and van Dijk (1978). Not only serves it as a building block for the SMC

methods and provides intuition for MCMC algorithms, but also it can be used as a

variance reduction method. Variance reduction is of key interest in risk analysis and

Chapters 2 and 3 are concerned with this topic.

Even though performance capabilities of modern computers have been continuously

increasing and the limitations in computations faced in the past are less of an issue

nowadays, numerical accuracy and efficiency are still of major interest in statistics and

econometrics. One of the reasons for this is that currently decisions need to be made

quicker than ever, often in real time, whether it is for central bankers, stock market

analysts or financial institution managers. Algorithms such as IS, MCMC or SMC

are theoretically sound and deliver exact estimates when the number of simulations

diverges to infinity. However, they all require a distribution to sample from, known as

an importance, proposal or candidate distribution. The quality of this distribution is

crucial for the ultimate performance of the algorithm. Hence different variants of the

same algorithm, only differing with respect to the choice of this sampling distribution,

are likely to result in dissimilar outcomes in terms of the uncertainty of the associated

estimator. Therefore, methods which are reliable only “in the limit” (after excessively

long simulation runs) are not suited for the purpose of real time decision making, with

fast and precise methods being naturally preferred. We address the issue of constructing

efficient sampling based algorithms – in different contexts – in all the chapters of this

thesis, in particular in Chapter 2 and 4.

Furthermore, typical modelling and inference methods are designed to explain average

scenarios. Since “all models are wrong”, as famously stated by George Box, we cannot

expect that our inference conditional on a model will be fully accurate. Nevertheless,

because “some models are useful” though, we can aim at finding valuable aspects of

a model or models at hand, while hedging against its or their potential shortcomings.

For instance, suppose our ultimate goal is inference over a particular region of the

posterior distribution, such as its tail. We then suggest to still use standard models

due to their well-documented ability to capture stylised facts of the data, but simply in

a problem-adjusted manner, with a tail-focused estimation. Chapter 3 is dedicated to

this problem. Alternatively, suppose that our aim is to construct a profit-maximising

portfolio while still caring about the associated investment risk. We cannot expect

that there is a universally dominating (e.g. over time) single model and a single invest-

5



CHAPTER 1. INTRODUCTION

ment strategy but we can construct the portfolio based on an appropriately specified

combination of models and strategies. We discuss and illustrate this idea in Chapter

5.

1.4 Thesis outline

This thesis consists of four self-contained chapters all related to Bayesian inference in

time-series models. Below we present their overview.

Chapter 2 is titled “Bayesian Risk Evaluation for Long Horizons” and is based on joint

work with Lennart Hoogerheide and Siem Jan Koopman. We present an accurate and

efficient method for Bayesian estimation of two financial risk measures, Value-at-Risk

and Expected Shortfall, for a given volatility model. We obtain precise forecasts of

the tail of the distribution of returns not only for the 10-days-ahead horizon required

by the Basel Committee but even for long horizons, like one-month or one-year ahead.

The latter has recently attracted considerable attention due to the different properties

of short term risk and long run risk. Precise forecasts of the tail of the distribution can

also be useful for option pricing. The key insight behind our proposed IS based ap-

proach is the sequential construction of marginal and conditional importance densities

for consecutive periods. For robustness, these importance densities are efficiently con-

structed as mixtures of Student’s t densities. By oversampling the extremely negative

scenarios and giving them lower importance weights, we achieve a much higher pre-

cision in characterising the properties of the left tail. We report substantial accuracy

gains for all the considered horizons in empirical studies on two datasets of daily finan-

cial returns, including a highly volatile period of the recent financial crisis. We analyse

two workhorse models used by financial practitioners, GARCH(1,1)-t and GAS(1,1)-t.

To illustrate the flexibility of the proposed construction method, we present how it can

be adjusted to the frequentist case, for which we provide counterparts of both Bayesian

applications.

Chapter 3 is titled “Partially Censored Posterior for Robust and Efficient Risk Eval-

uation” and is based on joint work with Lennart Hoogerheide, Siem Jan Koopman

and Herman K. van Dijk. We introduce a novel approach to inference for a specific

region of the predictive distribution. An important domain of application is accurate

prediction of financial risk measures, where the area of interest is the left tail of the

predictive density of logreturns. Our proposed approach originates from the Bayesian

approach to parameter estimation and time series forecasting, however it is robust in

6



1.4. THESIS OUTLINE

the sense that it provides a more accurate estimation of the predictive density in the

region of interest in case of misspecification. The first main contribution of this chap-

ter is the novel concept of the Partially Censored Posterior (PCP), where the set of

model parameters is partitioned into two subsets: for the first subset of parameters

we consider the standard marginal posterior, for the second subset of parameters (that

are particularly related to the region of interest) we consider the conditional censored

posterior. The censoring means that observations outside the region of interest are

censored: for those observations only the probability of being outside the region of

interest matters. This approach yields more precise parameter estimation than a fully

censored posterior for all parameters, and has more focus on the region of interest than

a standard Bayesian approach. The second main contribution is that we introduce

two novel methods for computationally efficient simulation: Conditional MitISEM, an

MCMC method to simulate model parameters from the Partially Censored Posterior,

and PCP-QERMit, an IS method that is introduced to further decrease the numeri-

cal standard errors of the Value-at-Risk and Expected Shortfall estimators. The third

main contribution is that we consider the effect of using a time-varying boundary of the

region of interest, which may provide more information about the left tail of the dis-

tribution of the standardized innovations. Extensive simulation and empirical studies

show the ability of the introduced method to outperform standard approaches.

Chapter 4 is titled “Semi-Complete Data Augmentation for Efficient State Space Model

Fitting” and is based on joint work with Ruth King. We propose a novel efficient

model-fitting algorithm for state space models. State space models are an intuitive

and flexible class of models, frequently used in practice. This flexibility, however, often

comes at the price of substantially more complicated fi

tting of such models to data due to the associated likelihood being analytically in-

tractable. For the general case a Bayesian data augmentation approach is often em-

ployed, where the true unknown states are treated as auxiliary variables and imputed

within the MCMC algorithm. However, standard “vanilla” MCMC algorithms may

perform very poorly due to high correlation between the imputed states and/or pa-

rameters, leading to the need for specialist algorithms. The proposed method circum-

vents the inefficiencies of traditional approaches by combining data augmentation with

numerical integration in a Bayesian hybrid approach. This approach permits the use

of standard “vanilla” updating algorithms that perform considerably better than the

traditional approach in terms of considerably improved mixing and hence lower au-

tocorrelation. We use the proposed Semi-Complete Data Augmentation algorithm in

different application areas and associated types of models, leading to distinct imple-
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mentation schemes and demonstrating efficiency gains in empirical studies.

Chapter 5 is titled “Forecast Density Combinations of Dynamic Models and Data

Driven Portfolio Strategies” and is based on Baştürk, Borowska, Grassi, Hoogerheide,

and van Dijk (2018). We propose a novel dynamic asset allocation approach in which

model-based forecasts are directly combined with a set of data driven portfolio strate-

gies, without the necessity to define a utility or other scoring function. The specification

of the underlying models is motivated by findings of a scrupulous analysis of typical

stylized facts of the time series of monthly returns of ten US industries over the pe-

riod 1926M7–2015M6. The portfolio strategies are based on the practice in financial

investing to take advantage of a positive or negative momentum in industry returns.

In probabilistic terms, the resulting dynamic asset-allocation model is specified as a

combination of return distributions stemming from multiple pairs of models and strate-

gies. The combination weights are defined through feedback mechanisms that enable

learning, to allow for cross-correlation and correlation over time. We base our Bayesian

inference over the proposed model on its representation as a nonlinear non-Gaussian

state space model. To increase the efficiency and robustness of the simulations we

introduce a new nonlinear filter based on mixtures of Student’s t distributions. Di-

agnostic analysis of posterior residuals gives insight into the model and strategy in-

completeness or misspecification. An extensive empirical application reveals that a

combination of a smaller set of flexible models outperforms a larger combination of

basic model structures in terms of expected return and risk. We believe that dynamic

patterns in combination weights and diagnostic learning provide useful signals from a

risk-management perspective and can help enhancing modelling and policy.

Chapter 6 summarises the main findings and concludes the thesis.
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Chapter 2

Bayesian Risk Evaluation for Long

Horizons

The global financial crisis stressed the importance of appropriate risk management

which requires the accurate prediction of the market risk related to fluctuations of

stock or index prices. It also emphasised the necessity of precise prediction of the

long-term financial risk: as noted by The Volatility Laboratory (2012)1, the turbulent

events of 2008 moved the focus of risk management from solely short term horizons to

the longer ones. This is because most portfolios consist of assets that are held longer

than just a few days, so that e.g. excess leverage is likely to pose a much higher risk in

the long run than in the short run (Engle, 2009). Hence, increased attention has been

recently devoted to risk measurement for one-month-ahead or even one-year-ahead

horizons, and not only the standard, 1-day-ahead or 10-days-ahead measures required

by the Basel Committee on Banking Supervision (1995).

One of the potential reasons why the main focus was previously on short-run measures

is the difficulty of obtaining precise evaluations of risk for long horizons. As noted by

McNeil et al. (2015) and Embrechts et al. (2005), an obvious approach to long-term

risk evaluation where the so-called scaling rule is applied to short term risk measures

might be inappropriate2. Furthermore, Christoffersen et al. (1998) state that generally

1As it describes itself, the Volatility Laboratory (V-Lab) of the Volatility Institute provides real
time measurement, modelling and forecasting of financial volatility, correlations and risk for a wide
spectrum of assets and it produces volatility forecasts up to a year in advance. The Volatility Institute
was created at New York University Stern School of Business in 2009 under the direction of Robert
Engle.

2The performance of the scaling rule crucially depends on the data generating process, in particular its
“closeness” to a normal random walk model, where indeed a quantile of H-days-ahead distribution is
given by the quantile of the 1-day-ahead distribution multiplied by

√
H (see Dańıelsson and Zigrand,
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CHAPTER 2. BAYESIAN RISK EVALUATION FOR LONG HORIZONS

conventional parametric models are ill-suited for extreme events analysis because they

focus on “average” scenarios in order to obtain a high goodness of fit. This misperfor-

mance may be even more severe when the horizon of analysis increases.

McNeil and Frey (2000) distinguish three main approaches for computing tail related

measures: non-parametric historical simulations (HS); parametric methods based on

an econometric model where the volatility dynamics are explicitly specified; methods

based on extreme value theory (EVT). They argue that a parametric model of volatility

is essential in order to capture the volatility dynamics exhibited by financial returns,

which allows for prediction of risk based on the current volatility background. More-

over, parametric time series models provide a framework to extrapolate the analysis

beyond the observed data – as opposed to the HS methods. For these reasons it is

a natural starting point for our analysis to build upon parametric methods from the

second group. As the main drawback of these models McNeil and Frey (2000) indicate

their common conditional normality assumption, which seems to be invalid for most

financial series. Hence, they apply EVT to estimate extreme quantiles of the distribu-

tion of the standardised residuals from a normal generalized autoregressive conditional

heteroskedasticity (GARCH) model. The EVT approach for capturing the properties

of extreme tails was also suggested by Christoffersen et al. (1998).

In this chapter we decide to proceed differently: in order to address the issue of pre-

cise long-run risk evaluation we build upon the approach of Hoogerheide and van Dijk

(2010). These authors suggest evaluation of the probability distribution of extreme

events via importance sampling (IS) based on a specially designed importance density

focusing on the left tail, for a given volatility model. To cope with heavy tails of con-

ditional return distributions we consider volatility models with Student’s t distributed

error terms. We propose an accurate and efficient approach to forecasting two stan-

dard measures of market risk, Value-at-Risk (VaR) and Expected Shortfall (ES), in a

situation when the prediction horizon is long, e.g. 40, 100 or 250 days ahead. The

latter is a noticeable contribution compared to Hoogerheide and van Dijk (2010), who

proposed a method suited for standard short-run analysis3. To this end we first re-

design the original approach of Hoogerheide and van Dijk (2010) using a more flexible

approximation algorithm. Second, we suggest a novel sequential construction of the

importance density which allows for “guiding” of the subsequent simulated returns over

2006; Diebold et al., 1997).
3This limitation was pointed out by the cited authors themselves, as they note that the relative
performance of their method may decrease with the prediction horizon length, due to the so-called
“curse of dimensionality of importance sampling”, and is likely to vanish for very long horizons, such
as 100-days-ahead.
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time so that the cumulative return falls in the “high-loss” region, so that analysis of

long horizons becomes feasible. In our approach the properties of the subsequent con-

ditional importance densities depend on the previous simulated returns in the sense

that at each step we take into consideration the cumulative return up to that time

point. This allows us to assess how much the situation still needs to deteriorate in

order to qualify for being a “high-loss” scenario. We focus on the 99% quantile of the

profit-loss distribution, as required by the Basel Committee on Banking Supervision

(1995); such an extreme tail is also more challenging to precisely predict than e.g. the

95% quantile, which is also commonly analysed.

It is important to stress that our method is universal, i.e. it can be applied for any

chosen parametric volatility model. Hence, we abstract from the issue of model selec-

tion, but aim at a precise and efficient evaluation of risk implied by the given model.

Nevertheless, our method is still highly advantageous in the context of model selection

because by reducing the uncertainty related to the simulation noise the comparison

between models is more likely to be based on their “true” quality.

As a variance reduction technique, IS has been already applied in the context of market

risk evaluation. Importantly, Glasserman et al. (1999), Glasserman et al. (2000) and

Glasserman et al. (2002) combine IS with stratified sampling to obtain precise esti-

mates of VaR. They, however, do not consider time series models and carry out barely

a “numerical example”, not an empirical study with real data. Furthermore, they re-

strict their attention to a 10-days-ahead horizon and analyse portfolio loss probabilities

from the frequentist perspective. However, risk forecasting, and in particular for long

horizons, is subject to a considerable parameter uncertainty. That is why the Bayesian

approach seems to be particularly suited for long-run risk analysis. In addition, not

only it naturally captures parameter uncertainty but also provides a convenient start-

ing point for considering model uncertainty via Bayesian model averaging. Therefore

we follow Hoogerheide and van Dijk (2010) and focus primarily on the analysis from

the Bayesian perspective. However, to illustrate the merits and the flexibility of the

proposed method, we demonstrate how the method can be adjusted to the frequentist

case, for which we provide the counterparts of the Bayesian applications.

The outline of the chapter is as follows. In Section 2.1 we first recall the approach of

Hoogerheide and van Dijk (2010) to show how IS can be applied in the context of risk

evaluation; second, we present how our proposed method allows to mitigate the “curse

of dimensionality”, inherent to IS, to allow for more accurate and efficient long run VaR

and ES forecasts. We illustrate the performance of our novel method in Section 2.2

with two workhorse models, commonly used by practitioners, i.e. GARCH(1,1)-t and
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GAS(1,1)-t. In Section 2.3 we consider the alternative, frequentist method for long

run prediction of VaR and ES: we discuss the necessary methodology modifications

and provide the frequentist counterparts of the Bayesian applications from Section 2.2.

Section 2.4 concludes and presents an outline for the further research.

2.1 Bayesian risk evaluation using importance sam-

pling

Let {yt}t∈Z be a time series of daily logreturns yt = 100(log pt− log pt−1) on a financial

asset with price pt at the end of day t, with y1:T := {y1, . . . , yT} denoting the observed

data. We assume that {yt}t∈Z is subject to a dynamic stationary process parametrised

by θ, on which we put a prior p(θ). Let y∗1:H = {yT+1, . . . , yT+H} denote the vector

of H future returns and consider the posterior predictive distribution of profit/loss

PL(y∗1:H) = 100
[
exp

(∑T+H
t=T+1 yt/100

)
− 1
]

(converting the sum of the logreturns to

the percentage return) defined as

p (PL(y∗1:H)|y1:T ) =

∫
p (PL(y∗1:H)|y1:T ,θ) p(θ|y1:T )dθ, (2.1.1)

obtained by marginalisation over the parameter with respect to the posterior distribu-

tion p(θ|y1:T ). We are interested in Bayesian estimation of the 100α% VaR, i.e. the

100(1 − α)% quantile of the posterior predictive distribution of profit/loss within a

horizon of the next H trading days, i.e.

100α% VaR = inf
{
x ∈ R : P(PL(y∗1:H) ≥ x|y1:T ) ≥ α

}
.

We also consider ES as an alternative risk measure, due to its advantageous properties

compared to VaR, mainly sub-additivity (which makes ES a coherent risk measure in

the sense of Artzner et al., 1999). Given 100α% VaR, the conditional ES is defined as

100α% ES = E
[
PL(y∗1:H)|PL(y∗1:H) < 100α% VaR

]
.

Since (2.1.1) is usually analytically intractable, simulation based methods need to be

applied in order to estimate VaR and ES. Following Hoogerheide and van Dijk (2010)

we distinguish two approaches to that. The first one, which we will refer to as the

direct approach, is straightforward:
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1. draw a sample of model parameter θ(i), i = 1, . . . ,M , from the posterior distri-

bution (using e.g. the Metropolis-Hastings algorithm);

2. generate the corresponding paths ofH future log-returns y∗(i) = {y(i)
T+1, . . . , y

(i)
T+H};

3. compute the resulting profits/losses PL(y∗(i));

4. sort in ascending order the values of PL(y∗(i)) to obtain the permutation PL(j),

j = 1, . . . ,M ;

5. obtain the 100α% VaR and ES as

V̂ aRDA = PL((1−α)N), (2.1.2)

ÊSDA =
1

(1− α)N

(1−α)N∑
j=1

PL(j). (2.1.3)

The Volatility Laboratory (2012) uses this direct approach for the non-Bayesian evalua-

tion of long-run VaR, where step 1 is replaced by frequentist estimation. The drawback

of the direct approach is that it is subject to an inherent problem of rare events sim-

ulations, i.e. that most of the generated scenarios are not the ones of the ultimate

interest, the extremely negative ones. This makes direct estimators very inefficient and

the only way to increase their precision is to consider many more draws. Obviously,

the latter is costly, in terms of both computing time and computing resources (e.g. the

available memory).

To illustrate the problem, let us introduce a toy example of white noise returns4

yt ∼
√
σ2εt εt ∼ N (0, 1),

σ2 ∼ p(σ2),

where p is a conjugate prior distribution. Then, the future profits/losses follow PL(y∗1:H) ∼
N (0, Hσ2). If we treat σ2 as known and equal to 1, i.e. under the assumption that the

data were generated from a standard normal distribution, the value for the 10-days-

ahead 99% VaR is given by Φ−1(0.01)
√

10 = −7.3566, for 100-days-ahead it is equal to

−23.2635, while for 250-days-ahead to −36.7828. Figure 2.1.1 presents the outcome of

the direct approach for the shortest horizon of 10-days-ahead. One can see that – as

4In this example we consider for simplicity the cumulative logreturn over H = 10 days (instead of
the percentage return), so that the profit/loss is just the sum of the H logreturns, i.e. PL(y∗1:H) :=∑H
h=1 y

∗
h.
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discussed above – only a very small fraction of roughly 1/100 of the generated paths

corresponds to the high losses that we are interested in, which indeed leads to a low

efficiency.

Forecast horizon
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Figure 2.1.1: Direct simulation results in very few paths (the red ones) below the 99% VaR value (the violet horizontal
line). White noise returns, 10-days-ahead horizon, simulated 10, 000 paths.

2.1.1 Tail focused importance density

To overcome the inefficiency of the direct approach, Hoogerheide and van Dijk (2010)

suggest importance sampling (IS), a well known variance reduction technique. Its

main merit is the potential focus on the important subspace by adopting an appro-

priate sampling density, which in the context of VaR and ES should be tail-focused.

Hoogerheide and van Dijk (2010) propose the Quick Evaluation of Risk using Mixture

of t approximations (QERMit) algorithm, where the key idea is to oversample the

high-loss scenarios and to give them lower importance weights. The theoretical insight

for their method comes from the properties of the optimal importance density for the

Bayesian estimation of f̄ ≡ E [f(X)] for a variable X with density kernel p(x), outlined

by Geweke (1989)5, which is given by

qopt(x) ∝ |f(x)− f̄ |p(x), (2.1.4)

provided that E[|f(X) − f̄ |] < ∞. For the case of f(x) = IS(x), i.e. the indicator

function of the set S, we have

E[f(X)] = P[X ∈ S] =: p̄

5Here, the optimality refers to minimisation, given the specified number of draws, of the numerical
standard error of the IS estimator of f̄ ≡ E [f(X)] , where f is the function of interest of the random
variable X, which has the density p̃(x) with the kernel p(x).
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and the optimal importance density is given by

qopt(x) ∝

(1− p̄)p(x), for x ∈ S

p̄p(x), for x 6∈ S
, or qopt(x) =

c(1− p̄)p̃(x), for x ∈ S

cp̄p̃(x), for x 6∈ S
,

where c is a constant, which results in6∫
x∈S

qopt(x)dx =

∫
x 6∈S

qopt(x)dx =
1

2
. (2.1.5)

Condition (2.1.5) implies that half of the total probability mass of the importance dis-

tribution shall be located in the region of interest S, and the remaining half outside

that region. Such a split is the consequence of using only the kernel of the target

distribution and not its proper density, which makes it necessary to adequately nor-

malise the importance weights via sampling from the whole domain instead of merely

sampling high loss scenarios, which is the optimal method in the frequentist approach

that we consider in the sequel of this chapter.

Hoogerheide and van Dijk (2010) apply the above result in the context of VaR and ES

estimation. Then, S is interpreted as the “high loss region”, i.e. the subspace of the

profits/losses space with the 100(1− α)% lowest values, while the optimal importance

density prescribes that 50% of draws shall represent high losses while the other 50%

the remaining profit/loss realisations. Figure 2.1.2 illustrates the construction of the

optimal importance density for the VaR estimation.

Notice that in the case of Bayesian estimation of VaR and ES we have a joint density

p(θ,y∗1:H |y1:T ) of the parameters θ and future returns y∗1:H of which we have kernel

p(θ,y∗1:H |y1:T ) ∝ p(θ)p(y1:T |θ)p(y∗1:H |θ,y1:T ),

the product of the posterior density kernel and the future returns’ density. The IS

estimator V̂ aRIS of the 100(1− α)% VaR is obtained by solving x in

̂P[PL(y∗1:H) ≤ x]IS = 1− α,

6This is obtained by noting that∫
x∈S

qopt(x)dx = c(1− p̄)
∫
x∈S

p̃(x)dx = cp̄(1− p̄) = cp̄

∫
x6∈S

p̃(x)dx =

∫
x6∈S

qopt(x)dx,

while
∫
x∈S qopt(x)dx+

∫
x 6∈S qopt(x)dx = 1.
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Profit/loss density and 99% VaR
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Figure 2.1.2: Construction of the optimal importance density. Exemplary density function (Student’s t with 5 degrees
of freedom) of profit/loss and the implied 99% VaR (top). The optimal importance density for the VaR estimation
(bottom).

which in practice can be done via the following procedure:

1. draw a sample of parameter vectors θ(i) and corresponding future returns y
∗(i)
1:H ,

i = 1, . . . ,M , from their joint importance density q(θ(i),y
∗(i)
1:H |y1:T );

2. compute the corresponding importance weights w(i) =
p(θ(i),y

∗(i)
1:H |y1:T )

q(θ(i),y
∗(i)
1:H |y1:T )

, i = 1, . . . ,M ;

3. compute the resulting profits/losses PL(y
∗(i)
1:H);

4. sort in ascending order the values of PL(y
∗(i)
1:H) to obtain the permutation PL(j),

j = 1, . . . ,M , with the corresponding weights w(j);

5. set V̂ aRIS as PL(k) for which

k∑
j=1

w(j) ≤ 1− α and
k+1∑
j=1

w(j) > 1− α,

and given V̂ aRIS

ÊSIS =
k∑
j=1

w(j)PL(j)

/
k∑
j=1

w(j).

2.1.2 Approximations by mixtures of Student’s t distributions

The choice of the importance density is crucial for the performance of the IS estimation.

Clearly, as pointed out by Geweke (1989), the importance density should resemble the
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target density and at the same time remain easy to sample from. Moreover, the tails of

the importance density need to be thicker than those of the target density, in order to

minimise the risk of omitting subsets of the target’s support. Finding an appropriate

importance density becomes particularly cumbersome when the shape of the target

density is non-elliptical. As illustrated by Figure 2.1.2, the optimal importance density

for Bayesian VaR estimation is generally bimodal.

A standard approach to overcome this problem is to approximate the target density

with a mixture of basis densities7, for which Student’s t densities are often chosen.

Several methods to construct the approximating mixture of Student’s t have been

developed, see Peel and McLachlan (2000), Svensén and Bishop (2005), Hoogerheide

et al. (2007) and Hoogerheide et al. (2012). We employ the latter algorithm, Mixture

of t by Importance Sampling weighted Expectation-Maximization (MitISEM). This is

a noticeable distinction compared to Hoogerheide and van Dijk (2010), whose original

QERMit algorithm relies on another approximation algorithm, Adaptive Mixture of t

(AdMit) of Hoogerheide et al. (2007). To explain our motivation behind this change of

the employed method, below we provide a brief discussion of the differences between

both techniques.

First, the objective function in AdMit is the coefficient of variation of the importance

weights (i.e., the standard deviation divided by the mean), which is directly minimised

via numerical optimisation. In contrast, MitISEM aims at minimising the Kullback-

Leibler divergence, which is an indirect way to minimise the variance of the IS estimator.

This makes the latter method quicker and more reliable, as it allows the optimization

of the importance density to be performed with an EM algorithm, so that no Newton-

Raphson based algorithm (such as the BFGS method) is needed. Second, MitISEM is a

“fully adaptive” algorithm, as each time a new component is added to the old mixture,

the parameters of all the components in the new mixture are jointly optimised, whereas

in AdMit only the parameters of the new component are optimised, with those of the

old mixture not being adjusted any more. Third, the only inputs to MitISEM are draws

from the importance density and their importance weights, while in AdMit one needs

to use the kernel of the joint target density. Thus, the latter method cannot be applied

to conditional or marginal densities, which makes it useless in our Bayesian analysis

which is based on the factorisation of the joint target density of the parameters and

future returns.

7Zeevi and Meir (1997) show that such mixtures can provide an arbitrarily close approximation to
any strictly positive density over a compact domain.
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2.1.3 Sequential construction of marginal/conditional impor-

tance densities

If the horizon of the future returns increases, then it becomes more difficult to obtain

an appropriate importance density for the parameters and future returns. Hence,

we want to construct an approximation “sequentially”, in each future time period

conditioning the properties of the current conditional importance density of the return

on the simulated parameters and returns in the previous periods. Intuitively, the idea

is to “guide” the draws to fall into the high-loss region: if so far certain losses have

been recorded, we know by how much the situation must additionally deteriorate to

end up in the tail. Such a sequential and conditional construction of the importance

densities can be easily carried out using the Partial MitISEM (PMitISEM) method

of Hoogerheide et al. (2012). This algorithm aims at approximating the joint target

density indirectly, by approximating the product of marginal and conditional target

densities of subsets of model parameters – and in our case future returns.

To explain how the “guiding” process is carried out, below we discuss the details of

PMitISEM. We express the joint target density p(θ) as a product of a marginal density

and conditional densities:

p(θ) = p(θS|θS−1, . . . ,θ2,θ1) . . . p(θ2|θ1)p(θ1),

where (θ1, . . . ,θS) is a partition of a k-dimensional vector θ into S subsets with re-

spective dimensions ks, s = 1, . . . , S, where naturally
∑S

s=1 ks = k. Then it may be

desirable to iteratively approximate each of the marginal and conditional densities due

to the implied dimensionality reduction for each of the sub-problems. In general, the

basic MitISEM could be applied to each of them to optimise the modes, scale ma-

trices, degrees of freedom and weights independently for each subset. However, this

would naturally result in a very poor joint importance density (unless the subsets θs

are independent) as the conditional structure would be neglected. In order to capture

the interdependence between the subsets, in the PMitISEM algorithm the modes of

the components in the subsequent conditional subsets are based on fitted values in the

regression of the current subset parameters on (a function of) the parameters from

the previous subsets (and potentially other “global” variables, e.g. functions of the

data). PMitISEM optimises the regression coefficients for the conditional importance

densities (corresponding to the subsets θ2, . . . ,θS), instead of optimising their modes.

Below we discuss the details of the regression.

The underlying idea comes from the basic result in multivariate regression theory. For
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the sake of simplicity of the exposition we restrict ourselves to the case S = 2; the

extension to more subsets is straightforward. Consider the (asymptotically valid) ap-

proximating normal distribution N (µ,Σ) for θ = (θT1 ,θ
T
2 )T , where µ = arg maxθ f(θ)

and Σ = − H(log f(θ))−1|θ=µ, where f(θ) is the posterior density kernel. Let

µ =

(
µ1

µ2

)
, Σ =

(
Σ11 Σ12

Σ21 Σ22

)
.

Then

θ1 ∼ N (µ1,Σ11),

θ2|θ1 ∼ N (µ2 + Σ−1
22 Σ21(θ1 − µ1)︸ ︷︷ ︸

βX

,Σ22 − Σ21Σ−1
11 Σ12).

The PMitISEM algorithm replaces both the marginal and conditional normal distri-

butions with mixtures of Student’s t distributions. The mixture for the marginal dis-

tribution for θ1 is constructed with the basic MitISEM algorithm. The mixture for

the conditional density for θ2 given θ1 is constructed with a modified version of the

algorithm, based on a regression of the parameters θ2 on a constant term and some

functions of parameters from the subsequent subset θ1 (and potentially the data),

all kept in the matrix X. Then, the above mentioned modification pertains to the

optimisation of the coefficients of regression β instead of the modes.

In the basic MitISEM algorithm the maximisation step for the modes and the co-

variance matrices of the c-th mixture component is given by

µ(L)
c =

[
N∑
i=1

W i z̃/w
i

c

]−1 [ N∑
i=1

W i z̃/w
i

cθ
i

]
,

Σ̂(L)
c =

∑N
i=1W

i z̃/w
i

c(θ − µ
(L)
c )(θi − µ(L)

c )T∑N
i=1W

i z̃ic
,

where W i are the importance weights, and where z̃/w
i

c and z̃ic, i = 1, . . . , N , are

computed in the expectation step of the algorithm. The exact formulae for their

computation, together with other details of the basic MitISEM algorithm are provided

in Appendix 2.A. In the partial MitISEM algorithm, the maximisation step for the

regression coefficients β and the covariance matrices (for the conditional densities) of
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the c-th mixture component becomes as follows

(β(L)
c )T =

[
N∑
i=1

W i z̃/w
i

cX
i
s(X

i
s)
T

]−1 [ N∑
i=1

W i z̃/w
i

cX
i
s(θ

i)T

]
,

Σ̂(L)
c =

∑N
i=1 W

i z̃/w
i

c(θ
i − β(L)

c X i
s)(θ

i − β(L)
c X i

s)
T∑N

i=1W
i z̃ic

.

Notice that in the current partial setting each draw θis (of length ks) from the subset s

(s = 2, . . . , S) has a different conditional mean µic = βcX
i
s, where X i

s is an r× 1 vector

(with elements being a constant and some r−1 functions of y and θ1, . . . ,θs−1) and βc

is a ks×r matrix. Intuitively, for each subset (and each component h in the conditional

importance density for this subset) βc characterises the common dependence of the s-th

subset of parameters θs (for component h) on the previous s− 1 subsets of parameters

(and on the data). The details of the procedure are presented in Appendix 2.B.

Let us return to the introductory toy example of white noise returns, with only one

model parameter σ2 and H other ‘parameters’ corresponding to the future disturbances

ε1, . . . , εH . The sampling scheme is then as follows

(σ2, ε1) ∼ q1,

ε2|σ2, ε1 ∼ q2,

ε3|σ2, ε1, ε2 ∼ q3,

...

εH |σ2, ε1, ε2, . . . , εH−1 ∼ qH .

To construct the conditional mixture importance densities qh with the PMitISEM

algorithm we put for h = 2, . . . , H

Xh =

[
1,

h−1∑
t=1

y∗t

]
,

i.e. a column of ones and the cumulative returns in the previous periods. The latter

choice is motivated by our aim to keep track of the evolution of the returns, i.e. how bad

the situation has become up to now. In order to construct the marginal and conditional

importance densities in the PMitISEM approach we need a preliminary set of parameter

draws and corresponding high loss paths of future returns. For this purpose we use the

high loss paths (and corresponding parameter draws) of a preliminary run of the direct
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approach (illustrated in Figure 2.1.1), which also yields a preliminary VaR estimate.

Given the preliminary VaR, this can allow us to assess how much “down” we still need

to go in order to get to the high loss region. In Figure 2.1.3 this aim can be seen as

ending up below the violet line.
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Figure 2.1.3: Simulations using PMitISEM result in almost all paths falling into the high-loss region (the red ones)
below the 99% VaR value (the violet horizontal line). White noise returns, 10-days-ahead horizon, 10, 000 simulated
paths.

2.2 Bayesian applications

In this section we discuss our key results for the 99% VaR and ES evaluation from the

Bayesian perspective. We analyse two benchmark models of volatility, commonly em-

ployed by practitioners, the Generalized Autoregressive Conditional Heteroscedasticity

model (GARCH, Engle, 1982; Bollerslev, 1986) and the Generalised Autoregressive

Score model (GAS, Creal et al., 2013), both with Student’s t innovations.

The main purpose of our applications is to illustrate the proposed IS-based evaluation

method, i.e. how it is implemented and what remarkable efficiency gains it can yield.

Keeping this in mind we apply each model to a different dataset, one used in the

original paper of Hoogerheide and van Dijk (2010) and another one consisting of more

recent data. Importantly, the former is a “calm” series, collected shortly before the

financial crisis of 2008, while the latter contains the “wild” period of that financial

distress, which makes the analysis much harder. Nevertheless, we record considerable

efficiency gains for all the considered horizons also for that difficult dataset.

2.2.1 GARCH(1,1)-t

As our first illustration we consider the most advanced application from Hoogerheide

and van Dijk (2010), where the authors apply the GARCH(1,1)-t model to the daily
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logreturns of the S&P 500, from January 2, 1998 to December 31, 2007 (2513 ob-

servations, Figure 2.2.1) to evaluate the 10-days-ahead 99% VaR and ES. This is a

natural starting point for our analysis, as with the AdMit algorithm, employed in the

original paper, it was already difficult to obtain 10-days-ahead forecasts, while with

the MitISEM algorithm “shorter” horizons, such as 10-day-ahead or 20-day-ahead, are

easily reachable. Moreover, adopting the Partial MitISEM algorithm allows us to ex-

tend the original analysis much further, to record time–precision gains even for the

one-year-ahead horizon.
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Data descriptive statistics

T: 2513

Mean: 0.0163

Median: 0.0476

Min.: -7.0438

Max.: 5.5744

St. Dev.: 1.1352

Skewness: -0.0388

Kurtosis: 5.6470

Figure 2.2.1: The data from the original Hoogerheide and van Dijk (2010) paper: the daily logreturns of the S&P
500, from January 2, 1998 to December 31, 2007.

The model is specified as follows:

yt = µ+
√
ρhtεt,

εt ∼ t(ν),

ρ :=
ν − 2

ν
,

ht = ω + αy2
t−1 + βht−1,

and we stack the model parameters into the vector θ = (ω, α, β, µ, ν). We put flat priors

on ω > 0, α ∈ (0, 1), β ∈ (0, 1) with α+β < 1, to enforce that the conditional variance

is positive and to ensure covariance stationarity, while for the degrees of freedom we

set an uninformative yet proper prior: ν − 2 ∼ Exp(0.01).

Table 2.2.1 presents the simulation results for the two direct approaches that we con-

sider. In the naive-direct approach the candidate density is based on a single Student’s

t distribution with the mode equal to the MLE, the scale matrix equal to minus the

inverse of the Hessian of the loglikelihood function evaluated at the mode, and the

number of degrees of freedom set to 3 to allow for fat tails (as suggested by Geweke,

1989). To obtain the candidate with the adapted-direct approach we employ the Mi-

tISEM algorithm (Hoogerheide et al., 2012) to approximate the posterior of the model
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ML MH (naive candidate) MH (adapted candidate)

Parameter MLE SD Mean SD IF Mean SD IF

ω 0.0082 0.0036 0.0091 0.0035 5.8174 0.0092 0.0034 5.4216

α 0.0726 0.0121 0.0702 0.0110 5.7170 0.0707 0.0109 4.7439

β 0.9238 0.0123 0.9241 0.0118 5.7776 0.9236 0.0117 4.8040

µ 0.0481 0.0169 0.0486 0.0171 5.5711 0.0489 0.0169 4.0058

ν 9.9964 1.9873 10.2582 1.9389 5.9288 10.2512 1.8897 4.2826

AR 0.4376 0.6802

Time construction 0.93 s 60.89 s

Time sampling 10.86 s 13.72 s

No. of draws 10,000 10,000

Table 2.2.1: Estimation results in the GARCH(1,1)-t model for Maximum Likelihood (ML) method (reported for
comparison) and the Bayesian direct approach with naive (Student’s t) and adapted (MitISEM mixture of Student’s
t) candidate distributions in the independence chain Metropolis-Hastings (MH) method: estimated posterior mean and
standard deviation (SD), inefficiency factor (IF), acceptance rate (AR) in the MH method, and computing times for
construction of the candidate distribution and for performing the direct approach.

parameters with the resulting candidate being a two-component mixture of Student’s

t distributions. Here, and in the subsequent applications, computation times refer to

computations performed on an Intel(R) Core(TM) i5–3470 processor with 3.20 GHz.

The “adaptation” of the candidate takes around one minute but allows for much closer

approximation to the posterior distribution. The acceptance rate (AR) in the inde-

pendence Metropolis-Hastings (MH) with the adapted candidate is almost 70%, which

is much higher than when the naive candidate is adopted, in which case the AR is

roughly 44%. Similarly, the adapted candidate results in less autocorrelated draws as

measured by the inefficiency factors (IF)8.

For the 99% VaR and ES evaluation we consider, next to both direct methods, two

QERMit (i.e. IS-based) approaches. In these methods we apply different methods to

approximate the “high-loss” density. The first one uses the basic MitISEM algorithm

and targets the posterior predictive density as a whole. For this reason, it usually

becomes infeasible to use for prediction horizons longer than 20, because then the co-

variance matrices of the Student’s t components are hard to work with. The second

approximation algorithm is PMitISEM, based on the sequential construction of the

8The inefficiency factor is defined as the variance of the parameter estimate divided by the variance
in case the sampling scheme would generate independent posterior draws and it is the inverse of
the relative numerical efficiency (see Pitt et al., 2012). For a sample of draws of a parameter ζ we

compute IF as IF(ζ) = 1 + 2
∑max{L,1000}
τ=1 ρτ (ζ), where ρτ (ζ) is the τ -th order autocorrelation in the

sequence of draws of parameter ζ and L is the lowest order τ for which ρτ is not significant.
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Subset Parameters No. of components Weighted∗ µ or β∗

1 {(θ, ε1)} 4 [0.0089 0.0698
0.9250 0.0473
9.8126 -1.0284]

2 {ε2} 5 [-1.0863 -0.0948]

3 {ε3} 5 [-1.1816 -0.1083]

4 {ε4} 5 [-1.2589 -0.1070]

5 {ε5} 5 [-1.4608 -0.1390]

6 {ε6} 5 [-1.6167 -0.1471]

7 {ε7} 5 [-1.8912 -0.1697]

8 {ε8} 5 [-2.4583 -0.2202]

9 {ε9} 4 [-2.8833 -0.2568]

10 {ε10} 5 [-5.0261 -0.4842]

∗Weighted with the mixture weights.

∗∗**The mode µ (for subset 1) or the regression coefficients β (for the other subsets).

Table 2.2.2: Properties of the marginal and conditional importance densities from the PMitISEM method for H = 10
in the GARCH(1,1)-t model.

marginal and conditional importance densities as discussed in Section 2.1.3, which al-

lows to extend the analysis way further than the basic QERMit of Hoogerheide and van

Dijk (2010). We refer to these two methods by subscripts mit and pmit, respectively.

Table 2.2.2 presents the properties of the partial mixture generated by PMitISEM for

the 10-days-ahead case. Similarly as in the “toy” example of white noise returns we

regress the draws from the current conditional importance density s on

Xs =

[
1,

s−1∑
t=1

y∗t

]
,

to update the mode of the current conditional density. The last column contains

the weighted mode of the marginal importance density, i.e. for s = 1, and weighted

coefficients of regression for the conditional importance densities, i.e. for s = 2, . . . , 10.

The latter show how PMitISEM “guides” the subsequent draws into the “high-loss

region”. As expected, the later the period, the more negative the regression coefficient

(at the cumulative return up to period s−1), with a noticeable jump in the last period

to guarantee that the whole scenario becomes a high-loss one.
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Table 2.2.3 compares the results for the 99% VaR and ES evaluation for different

horizons, for which a visualisation is provided in Appendix 2.C.1. For each method,

the results are based on 10, 000 draws, while to obtain the NSEs and interquantile

ranges (IQR) we performed 20 Monte Carlo replications of the evaluation experi-

ment. Here, and in the next applications, we consider five horizon lengths, H ∈
{10, 20, 40, 100, 250}. This selection ranges from the standard, intermediate horizon of

two weeks, required by Basel Committee on Banking Supervision (1995), through the

one month horizon, up to the long run, one-year-ahead horizon. The QERMit based

methods clearly outperform the direct approaches, with both RNEs and IQRs being

roughly 6 times higher for H = 10 VaR and almost 3 times for H = 10 ES. For the

longest horizon of H = 250 QERMit delivers two to three times more accurate results

than its direct competitors, both for VaR and ES evaluations. As expected, for long

horizons, with H = 40 or more, the basic MitISEM becomes infeasible, due to the

too high dimensionality of the scale matrices of the mixture components it would need

to tackle. Fortunately, owing to the partial candidate construction, PMitISEM is still

able to deliver satisfactory results even for these long horizons. Notice that PMitISEM

outperforms the basic MitISEM already for the shorter horizons (H = 10 and H = 20),

where its VaR forecasts are over twice more accurate than those obtained with basic Mi-

tISEM; for the ES the relative advantage of PMitISEM over basic MitISEM is smaller,

yet still existing (the results from the latter algorithm are almost 50% less accurate

than these from the former one). Interestingly, a better approximation to the posterior

does not need to lead to a better performance in the tail: in some cases the adapted

direct approach yields worse results than its naive counterpart, in particular when one

considers just the IQR and not the NSE (cf. the NSE and the IQR for the VaR at

H = 250 or just the IQR for the VaR at H = 10 or the ES at H = 20). This con-

firms the remark of Christoffersen et al. (1998) that standard, goodness-of-fit-focused

methods are not bound to succeed in the tail estimation problems.

Naturally, for any method it holds that the longer the horizon, the lower the prediction

accuracy. Also the advantage of the QERMit method over the direct approach dimin-

ishes when the horizon gets extended. The crucial question is then whether there is still

a gain, in terms of the time-precision trade-off, of adopting a more accurate but also a

more complex and time consuming method. To quantify that trade-off we consider the

gain in precision (defined as the inverse of the variance) for one unit of computing time.

We refer to it as the slope, as it characterises the steepness of a function determining

the dependence between precision and computing time. A method with a higher slope

will eventually require less computing time to achieve a certain (high) precision, even
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Figure 2.2.2: Precision (1/var) of the estimated VaR (left) and ES (right), as a function of the amount of computing
time for different approaches, for the GARCH(1,1)-t model, for the shortest and the longest horizon. The horizontal
line corresponds to a precision of 1 digit (1.96NSE ≤ 0.05). A missing line for the MitISEM-based importance density
corresponds to a situation when it was not possible to construct such an importance density.

after accounting for an inevitable fixed “investment cost” of time needed to construct

a reliable importance density. The results of the investigation on this issue are pre-

sented in Table 2.2.4, and the plots corresponding to the shortest and longest horizon

are presented in Figure 2.2.2 (Appendix 2.D.1 provides plots for all the horizons, with

additional details on the plots construction). The QERMit based methods turn out to

be not only more accurate but also more efficient than the direct approaches, in a sense

that they require less computing time and fewer draws to achieve the same accuracy

as the direct methods, or, stated differently, they yield higher precision in the same

time and using the same number of draws. Importantly, the conditioning of partial

MitISEM allows us to increase efficiency for all horizons, including the longest horizon

of H = 250, for both, VaR and ES evaluations.

Finally, following Hoogerheide and van Dijk (2010) we also consider the benchmark of 1

digit precision with 95% confidence. It is defined as 1.96NSE ≤ 0.05, which corresponds

to the required precision level of 1536. Then, the time required and draws required refer

to the computing time and the number of draws necessary to achieve this precision

level. Notice, that this benchmark is set somewhat arbitrarily and considering a higher

confidence would mean a much higher required precision. For instance, changing of
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H V aRnaive V aRadapt V aRmit V aRpmit ESnaive ESadapt ESmit ESpmit

10 -8.1484 -8.1257 -8.2091 -8.1808 -9.9134 -9.7853 -9.9209 -9.8759

NSE (0.1836) (0.1748) 0.0531 (0.0267) (0.2329) (0.1922) (0.1192) (0.0838)

IQR [0.2066] [0.2478] [0.0840] [0.0367] [0.4104] [0.2563] [0.1543] [0.1384]

RNE 1.02 1.01 5.8198 12.37 1.59 1.60 11.28 44.66

20 -11.2028 -11.2846 -11.3024 -11.2265 -13.5991 -13.7225 -13.6589 -13.5866

NSE (0.2907) (0.2151) 0.1454 (0.0626) (0.3923) (0.3436) (0.1683) (0.1141)

IQR [0.3382] [0.3125] [0.2157] [0.0958] [0.5424] [0.6844] [0.2118] [0.1536]

RNE 1.01 1.03 2.6315 8.75 1.63 1.65 2.23 12.05

40 -15.2151 -15.2188 – -15.3329 -18.5758 -18.6593 – -18.7022

NSE (0.3520) (0.3094) (–) (0.1020) (0.5806) (0.5470) (–) (0.1991)

IQR [0.3605] [0.3839] [–] [0.1213] [0.9029] [0.5279] [–] [0.2513]

RNE 1.03 1.00 – 7.79 1.77 1.67 – 25.85

100 -22.6319 -22.6711 – -22.6115 -28.4722 -28.3719 – -28.6178

NSE (0.6497) (0.4005) (–) (0.2433) (0.8134) (0.7701) (–) (0.3119)

IQR [0.8049] [0.5865] [–] [0.4399] [1.0842] [1.2843] [–] [0.4846]

RNE 1.03 1.05 – 5.43 1.64 1.65 – 9.08

250 -32.0179 -32.0471 – -32.1617 -41.3818 -41.8261 – -41.3818

NSE (0.6737) (0.7966) (–) (0.3266) (1.2958) (1.2476) (–) (0.4583)

IQR [0.7134] [0.9548] [–] [0.4905] [2.2109] [1.6169] [–] [0.5894]

RNE 1.02 1.03 – 3.73 1.65 1.65 – 10.11

Missing value (–): it was not possible to generate the particular result with the corresponding algorithm.

Table 2.2.3: Results for the 99% VaR and ES, in the GARCH(1,1)-t model, based on N = 10, 000 draws and 20
replications to obtain the numerical standard error (NSE) and the interquartile range (IQR). The RNE is the relative
numerical efficiency, the inverse of the inefficiency factor. The results are obtained using the direct approach (with naive
and adapted candidate distribution in the Metropolis-Hastings algorithm), and the QERMit method (with the basic
MitISEM and PMitISEM methods), respectively.

the confidence to 99% would raise it to 2654. Table 2.2.4 shows that even for the

longest considered horizon of H = 250 the QERMit method is almost 2.5 times faster

in estimating the 99% VaR with such a reasonable precision and requires over 4 times

fewer draws to achieve that than the direct approach. For the ES the relative gain is

even higher as QERMit turns out to be more than 5 times faster and nearly 8 times

less draw-requiring than the naive direct approach. Notice that demanding a higher

confidence on the precision would make QERMit even more advantageous relative to

the direct approach.
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Direct QERMit Direct QERMit

H Naive Adapted MitISEM PMitISEM Naive Adapted MitISEM PMitISEM

Total time

10 13.89 s 98.65 s 127.00 s 218.56 s

20 13.78 s 98.57 s 270.51 s 150.68 s

40 13.96 s 98.61 s – 328.77 s

100 13.95 s 98.93 s – 544.84 s

250 14.09 s 99.20 s – 1193.52 s

Construction time Sampling time

10 0.88 s 85.14 s 113.56 s 205.31 s 13.01 s 13.52 s 13.44 s 13.26 s

20 0.88 s 85.01 s 257.03 s 136.29 s 12.91 s 13.56 s 13.48 s 14.39 s

40 0.91 s 85.01 s – 314.87 s 13.05 s 13.60 s – 13.90 s

100 0.87 s 85.16 s – 530.03 s 13.08 s 13.77 s – 14.81 s

250 0.87 s 85.30 s – 1176.81 s 13.22 s 13.90 s – 16.72 s

VaR slope∗ ES slope∗

10 2.28 2.42 26.34 105.78 1.42 2.00 5.23 10.74

20 0.92 1.59 3.51 17.75 0.50 0.62 2.62 5.34

40 0.62 0.77 – 6.92 0.23 0.25 – 1.81

100 0.18 0.45 – 1.14 0.12 0.12 – 0.69

250 0.17 0.11 – 0.56 0.05 0.05 – 0.28

VaR time required∗∗ ES time required∗∗

10 674.42 s 719.98 s 171.89 s 219.84 s 1,085.54 s 852.25 s 407.13 s 348.36 s

20 1,677.00 s 1,049.22 s 694.79 s 222.84 s 3,053.12 s 2,544.50 s 843.71 s 423.86 s

40 2,485.72 s 2,085.40 s – 536.97 s 6,762.26 s 6,338.28 s – 1,161.81 s

100 8,486.05 s 3,480.60 s – 1,877.18 s 13,299.21 s 12,637.37 s – 2,743.92 s

250 9,220.75 s 13,640.17 s – 3,917.09 s 34,108.73 s 33,336.37 s – 6,573.53 s

VaR draws required∗∗ ES draws required∗∗

10 517,761 469,580 43,392 10,959 833,801 567,412 218,386 107,921

20 1,298,426 711,093 324,786 60,162 2,364,446 1,813,836 435,278 199,891

40 1,903,737 1,470,764 – 159,768 5,180,194 4,597,643 – 609,227

100 6,486,508 2,465,138 – 909,605 10,165,937 9,113,098 – 1,494,828

250 6,975,069 9,750,193 – 1,639,192 25,803,439 23,917,916 – 3,228,229

Missing value (–): it was not possible to generate the particular result with the corresponding algorithm.

∗Slope = increase in precision per unit of computing time.

∗∗Required for % estimate with 1 digit of precision (with 95% confidence).

Table 2.2.4: Trade-off of precision versus computing time for the 99% VaR and ES in GARCH(1,1)-t model for
different horizons.
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2.2.2 GAS(1,1)-t

Having referred to the benchmark GARCH application of Hoogerheide and van Dijk

(2010), in our second illustration we consider a more recently developed model for

more recent data. Creal et al. (2013) propose an alternative approach to modelling

volatility based on the updating of the time-varying parameter with the scaled score of

the observation’s contribution to the likelihood function. We employ their Generalised

Autoregressive Score (GAS) model to the daily logreturns of the S&P 500, from January

3, 2005 to June 30, 2016 (2893 observations, Figure 2.2.3) to evaluate the 99% VaR

and ES at the same horizons as in the previous section9. The data span over the

2008 financial crisis resulting in very high sample kurtosis, so that one would expect

potential difficulties in obtaining precise risk forecasts.
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Figure 2.2.3: The series including the 2008 Financial Crisis: the daily logreturns of the S&P 500, from January 3,
2005 to June 30, 2016.

We adopt the following basic specification of the GAS model, referred to as GAS(1,1)-t,

yt = µ+
√
ρhtεt,

εt ∼ t(ν),

ρ :=
ν − 2

ν
,

ht = ω + A
ν + 3

ν

(
Ct−1(yt − µ)2 − ht−1

)
+Bht−1,

Ct =
ν + 1

ν − 2

(
1 +

(yt−1 − µ)2

(ν − 2)ht−1

)−1

,

where we stack the model parameters into vector θ = (µ, ω,A,B, ν)T . Finally, we

9We also considered “complimentary” applications, i.e. employing the GAS model to the “old” dataset,
as well as running the GARCH model on the “crisis” series. The former application performed better
than the originally analysed model, yielding even more noticeable efficiency gains than those reported
in Section 2.2.1. Regarding the latter, the GAS model as expected, provided a much better framework
for modelling extreme returns present in the crisis data compared to the GARCH model, which is a
result also reported by Jelsma and Lasak (2016).
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put flat priors on µ, ω, A and B, with ω > 0 and B ∈ (0, 1) to guarantee that the

conditional variance is positive and to ensure covariance stationarity, and uninformative

exponential prior on ν, ν − 2 ∼ Exp(0.01).

Table 2.2.5: Estimation results in the GAS(1,1)-t model for Maximum Likelihood (ML) method (reported for
comparison) and the Bayesian direct approach with naive (Student’s t) and adapted (MitISEM mixture of Student’s
t) candidate distributions in the independence chain Metropolis-Hastings (MH) method: estimated posterior mean and
standard deviation (SD), inefficiency factor (IF), acceptance rate (AR) in the MH method, and computing times for
construction of the candidate distribution and for performing the direct approach.

ML MH (naive candidate) MH (adapted candidate)

Parameter MLE SD Mean SD IF Mean SD IF

µ 0.0702 0.0141 0.0738 0.0140 4.8736 0.0739 0.0140 3.6611

ω 0.0219 0.0050 0.0222 0.0048 4.9919 0.0221 0.0048 3.6370

A 0.0996 0.0111 0.1026 0.0111 4.7300 0.1022 0.0110 3.6902

B 0.9817 0.0061 0.9818 0.0059 4.6926 0.9819 0.0059 3.7480

ν 6.8979 1.0376 7.0853 1.0256 5.0386 7.0762 1.0163 3.7607

AR 0.5547 0.7776

Time construction 0.98 s 108.83 s

Time sampling 17.24 s 17.80 s

No. of draws 10,000 10,000

Table 2.2.5 presents the simulation results for the two direct approaches. This time,

due to a bit longer series and a more complex volatility update formula, the adaptation

of the direct candidate takes slightly more than 1.5 minutes. However, the resulting AR

is much higher than in the previous application, reaching nearly 78%; it also exceeds the

one obtained with the naive candidate, which somewhat exceeds 55%. The superiority

of the adapted candidate is also reflected in lower IF values for all the parameters.

Notice that the degrees of freedom for the observation disturbances ν are estimated

at a lower level than in the previous application (around 7 compared to roughly 10

before), which corresponds to a much more volatile nature of the current dataset.

Table 2.2.6 presents the properties of the partial mixture generated by PMitISEM for

the 10-day-ahead case. Given an uneasy character of the current time series it is inter-

esting to notice that with the GAS model a lower number of mixture components was

required by the PMitISEM algorithm to approximate the tails, compared to the pre-

vious application. Now two or three components are sufficient while with the GARCH

model as many as four to five components were necessary – and this was the case

for much more regular data. Again, the last column presents decreasing values of the

regression coefficient (at the cumulative return up to period s− 1) used to determine
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Subset Parameters No. of components Weighted∗ µ or β∗

1 {(θ, ε1)} 1 [0.0731 0.0225
0.1045 0.9823
7.0176 -1.0027]

2 {ε2} 2 [-1.1023 -0.0975]

3 {ε3} 2 [-1.1874 -0.0887]

4 {ε4} 2 [-1.2748 -0.0966]

5 {ε5} 2 [-1.4993 -0.1150]

6 {ε6} 1 [-1.6575 -0.1231]

7 {ε7} 2 [-1.9947 -0.1557]

8 {ε8} 3 [-2.3280 -0.1755]

9 {ε9} 3 [-2.9323 -0.2234]

10 {ε10} 3 [-4.8901 -0.3954]

∗Weighted with the mixture weights.

∗∗The mode µ (for subset 1) or the regression coefficients β (for the other subsets).

Table 2.2.6: Properties of the marginal and conditional importance densities from the PMitISEM method for H = 10
in the GAS(1,1)-t model.

the modes of subsequent conditional mixtures, exhibiting the process of “guiding” of

the draws to the tail by PMitISEM.

Table 2.2.7 reveals that also this time we observe substantial accuracy gains for our

proposed methods for all horizons, for both the 99% VaR and ES (for the corresponding

visualisation we refer to Appendix 2.C.1). For the VaR evaluations at H = 10, 20, 40

the NSE is around four times smaller, while for H = 100 and H = 250 it is roughly 2.5

times smaller. Again, the ES turns out to be somewhat harder to precisely estimate

than the VaR, yet also in this case we report considerable gains. For H ≤ 40 the

computed NSEs are around three times lower with the PMitISEM based QERMit

than with the direct approaches, while for the two longest horizons they diminish more

than twice. Broadly speaking, a similar pattern pertains to the computed IQRs.

Finally, the most important results on time-precision trade-off are provided in Table

2.2.8 with the plots corresponding to the shortest and longest horizon presented in

Figure 2.2.4 (Appendix 2.D.1 provides plots for all the horizons). For all horizons,

for both the VaR and the ES, the slopes obtained with the PMitISEM algorithm are

much higher than in the case of the direct approach, often by more than one order of
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(c) VaR, H = 250

Computing time (s)

P
re
ci
si
o
n
=

1
/v
ar
(E

S
es
t.
)

 

 

0 400 800 1200 1600 2000 2400 2800 3200 3600 40000

500

1000

1500

2000

2500
One Digit Precision

Direct Naive
Direct Adaptive

QERMit PMitISEM

(d) ES, H = 250

Figure 2.2.4: Precision (1/var) of the estimated VaR (left) and ES (right), as a function of the amount of computing
time for different approaches, for the GAS(1,1)-t model, for the shortest and the longest horizon. The horizontal line
corresponds to a precision of 1 digit (1.96NSE ≤ 0.05). A missing line for the MitISEM-based importance density
corresponds to a situation when it was not possible to construct such an importance density.

magnitude. Also basic MitISEM outperforms the direct approaches, but it is clearly

inferior to PMitISEM. Eventually PMitISEM requires less time (and fewer draws) to

achieve the same precision as the direct approaches. For instance, when the 1 digit

precision with 95% confidence is considered, to accurately evaluate the 99% VaR and

ES, the PMitISEM based QERMit needs, respectively, almost 3 and over 4 times less

time than the naive direct approach (which outperforms the adaptive direct method).
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H V aRnaive V aRadapt V aRmit V aRpmit ESnaive ESadapt ESmit ESpmit

10 -9.4284 -9.4076 -9.4290 -9.4358 -11.5862 -11.4901 -11.6038 -11.5870

NSE (0.2183) (0.2793) 0.1040 (0.0601) (0.2988) (0.3205) (0.1205) (0.1078)

IQR [0.2697] [0.3666] [0.1865] [0.0891] [0.4290] [0.5576] [0.1183] [0.1505]

RNE 1.02 1.03 5.0467 9.92 1.67 1.59 8.82 26.39

20 -12.5332 -12.6962 -12.6807 -12.6483 -15.5819 -15.6293 -15.7741 -15.6556

NSE (0.3039) (0.3145) 0.1569 (0.0686) (0.4837) (0.4070) (0.3280) (0.1310)

IQR [0.5002] [0.3988] [0.2253] [0.1264] [0.6433] [0.5856] [0.3339] [0.1832]

RNE 1.01 1.03 2.4818 8.43 1.65 1.60 4.62 24.17

40 -16.4218 -16.4804 – -16.4626 -20.7435 -20.8218 – -20.8775

NSE (0.3907) (0.3582) (–) (0.0907) (0.7497) (0.5630) (–) (0.2182)

IQR [0.3910] [0.5375] [–] [0.1363] [0.7104] [0.8472] [–] [0.2692]

RNE 1.00 1.01 – 7.67 1.76 1.65 – 30.58

100 -21.7043 -21.7532 – -21.6031 -28.3618 -28.6295 – -28.4508

NSE (0.4918) (0.5725) (–) (0.2135) (1.1395) (0.7797) (–) (0.4737)

IQR [0.6407] [0.8066] [–] [0.3593] [2.0389] [1.1382] [–] [0.3251]

RNE 1.04 1.02 – 5.73 1.71 1.69 – 14.57

250 -25.2962 -25.4476 – -25.1630 -34.9541 -34.4421 – -34.3317

NSE (0.7228) (0.9014) (–) (0.3332) (1.1825) (1.5043) (–) (0.4997)

IQR [1.0707] [1.2386] [–] [0.5608] [1.8279] [1.4069] [–] [0.5731]

RNE 1.02 1.01 – 4.41 1.71 1.71 – 3.10

Missing value (–): it was not possible to generate the particular result with the corresponding algorithm.

Table 2.2.7: Results for the 99% VaR and ES, in the GAS(1,1)-t model, based on N = 10000 draws and 20
replications to obtain the numerical standard error (NSE) and the interquartile range (IQR). The RNE is the relative
numerical efficiency, the inverse of the inefficiency factor. The results are obtained using the direct approach (with naive
and adapted candidate distribution in the Metropolis-Hastings algorithm), and the QERMit method (with the basic
MitISEM and PMitISEM methods), respectively.
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Direct QERMit Direct QERMit

H Naive Adapted MitISEM PMitISEM Naive Adapted MitISEM PMitISEM

Total time

10 21.64 s 126.74 s 208.47 s 152.90 s

20 21.52 s 126.74 s 189.78 s 164.66 s

40 21.57 s 126.79 s – 186.77 s

100 21.65 s 126.86 s – 297.01 s

250 21.87 s 127.13 s – 1191.88 s

Construction time Sampling time

10 4.41 s 108.94 s 192.11 s 136.38 s 17.23 s 17.81 s 16.36 s 16.52 s

20 4.28 s 108.92 s 171.95 s 147.82 s 17.24 s 17.82 s 17.83 s 16.83 s

40 4.29 s 108.94 s – 169.85 s 17.28 s 17.85 s – 16.92 s

100 4.29 s 108.91 s – 279.05 s 17.36 s 17.94 s – 17.96 s

250 4.30 s 108.96 s – 1170.85 s 17.57 s 18.17 s – 21.02 s

VaR slope∗ ES slope∗

10 1.22 0.72 5.66 16.76 0.65 0.55 4.21 5.21

20 0.63 0.57 2.28 12.61 0.25 0.34 0.52 3.46

40 0.38 0.44 – 7.18 0.10 0.18 – 1.24

100 0.24 0.17 – 1.22 0.04 0.09 – 0.25

250 0.11 0.07 – 0.43 0.04 0.02 – 0.19

VaR time required∗∗ ES time required∗∗

10 1,266.27 s 2,243.21 s 463.78 s 228.07 s 2,368.24 s 2,919.50 s 557.28 s 431.26 s

20 2,450.42 s 2,817.30 s 846.93 s 269.72 s 6,201.54 s 4,643.55 s 3,120.15 s 591.50 s

40 4,057.15 s 3,628.94 s – 383.75 s 14,926.56 s 8,803.87 s – 1,408.28 s

100 6,455.40 s 9,146.02 s – 1,537.72 s 34,635.95 s 16,871.56 s – 6,473.64 s

250 14,112.09 s 22,790.17 s – 4,756.85 s 37,756.56 s 63,277.38 s – 9,238.90 s

VaR draws required∗∗ ES draws required∗∗

10 732,326 1,198,603 166,065 55,495 1,371,858 1,578,403 223,218 178,472

20 1,419,270 1,519,981 378,493 72,408 3,595,706 2,544,903 1,653,200 263,554

40 2,345,620 1,971,873 – 126,410 8,636,375 4,870,819 – 731,891

100 3,716,418 5,036,326 – 700,689 19,950,925 9,341,719 – 3,448,462

250 8,028,977 12,485,292 – 1,705,594 21,485,424 34,772,225 – 3,837,372

Missing value (–): it was not possible to generate the particular result with the corresponding algorithm.

∗Slope = increase in precision per unit of computing time.

∗∗Required for % estimate with 1 digit of precision (with 95% confidence).

Table 2.2.8: Trade-off of precision versus computing time for the 99% VaR and ES in GARCH(1,1)-t model for
different horizons.
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2.3 Frequentist QERMit

The theoretical reason for the 50%-50% formula (2.1.5) was that in Bayesian analysis

usually only a kernel of the target density is available, i.e. the normalising constant

for the posterior density is unknown, so that one needs to normalise the importance

weights by their sum. If the target was known there would be no need to normalise

the importance weights and the optimal sampling density would put all the probability

mass into the region of interest. This is typically the case in frequentist inference,

where we only need to simulate the future returns (or future innovations) of which

we know the exact density (including the scaling constant) given the parameter vector

θ. Let p(ε∗) denote the target density of future disturbances, ε∗ = (ε∗1, . . . , ε
∗
H), and

suppose that the vector of model parameters θ is fixed (this can be seen as either the

“true” model parameters being known or the MLE being available). Then the optimal

importance density is a function only of ε∗, given θ, and it is constructed solely over

the tail.

In general, the optimal candidate density for estimation of Ep[g(X)] is given by

qopt(x) = C|g(x)|p(x)

with the normalising constant C = 1/Ep[|g(X)|] (see Kahn and Marshall, 1953). In

the case of estimating probability p̄ of an event S we have g(x) = 1S(x), hence

qopt(x) = 1S(x)p(x)/p̄,

so it is a density proportional to the target over the set S. Then

Ep[1S(X)] =

∫
S

p(x)dx

=

∫
S

p(x)

qopt(x)
qopt(x)dx

= Eqopt [1S(X)w(X)],

where w(x) = p(x)/qopt(x), and its unbiased and consistent MC estimator is then given

by

̂Ep[1S(X)] =
1

N

N∑
i=1

1S(x(i))w(x(i)),
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where x(1), . . . , x(N) are i.i.d. draws from qopt. Notice that using qopt results in zero-

variance IS, as p(x)
qopt(x)

1S(x) is constant (equal to Ep[g(X)]). Hence, in the case when

the target density is known, there is no limit on the potential relative gain in precision

from using IS rather than direct simulation10, which means that the RNE can be

unbounded. In practice, however, the problem is that to implement sampling based on

qopt, one needs to know p̄, which obviously is infeasible as the evaluation of p̄ is the goal

of the undertaken analysis in the first place. In the context of risk evaluation, using

the previously introduced notation, we would need to know the 100α% VaR. Hence,

similarly as in the Bayesian case, we can approximate qopt based on some preliminary

value VaRprelim obtained with the direct approach. To this end we again use a mixture

of Student’s t distributions delivered by MitISEM.

As already noted in the introduction, the advantages of IS as a variance reduction tech-

nique in the frequentist case have already been noticed in the literature. Glasserman

et al. (1999) and Glasserman et al. (2000) combine IS with stratified sampling to obtain

precise estimates of VaR, while Glasserman et al. (2002) extend their analysis to also

include ES. They specify an importance density based on a quadratic “delta-gamma”

approximation to the change in portfolio value. They, however, do not consider time

series models and do not carry out an empirical study on the real data, which are of

key interest to us. Hence, we do not consider their approach in our research, although

some insights from those studies might be useful in further research.

2.3.1 GARCH(1,1)-t

Below we discuss the frequentist counterpart of the Bayesian analysis of the GARCH(1,1)-

t model from Section 2.2.1. We fix the model parameters to their MLE values (reported

in Table 2.2.1), compute the corresponding volatility for the last in-sample time period

and simulate only the i.i.d. future disturbances εh, h = 1, . . . , H. Since there is no pos-

terior density to approximate in this case, now we have only one direct approach, where

we simulate εh directly from the target, which in this case is the standard Student’s

t density with roughly 10 degrees of freedom. The QERMit approaches are based on

the approximations to the tail of the target, i.e. the tail of the predictive density.

Table 2.3.1 shows that also in the frequentist case we achieve noticeable improvements

in the accuracy of the VaR and ES evaluations for all horizons (the corresponding plots

10See Hoogerheide and van Dijk (2010), who derive the limit of the potential relative gain in precision
from using IS rather than direct simulation for VaR evaluation in the Bayesian context, which is
equal to (4(1− p̄)p̄)−1. This is 25.25 for p̄ = 0.01, the case of the 99% VaR. Note that the relative
precision gain may be higher for the ES.
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are provided in Appendix 2.C.2). This time, the NSEs for the VaR are four to eight

times lower when computed using the PMitISEM based QERMit than in the case of

direct sampling. For the ES PMitISEM outperforms the direct approach by more than

three times. Notice that the RNEs for the QERMit based methods are astonishingly

high, for the VaR ranging from over 3000 for H = 10, to 30 at H = 250, and for the

ES from 250 to 10, respectively. This clearly demonstrates that in the frequentist case

using IS rather than the direct simulation faces no limits on the relative precision gain

and is “barely” constrained by our ability to construct an accurate candidate density.

Regarding the crucial time-precision trade-off, Table 2.3.2 shows that once again the

slopes for the QERMit-based methods are higher than these of the direct approach

(Appendix 2.D.2 provides the corresponding plots for all the horizons), usually two to

three times. For some horizons, however, the increase in the slope due to adopting

our IS-based method is much higher (for H = 100 it is over 7 for the VaR and over

13 for the ES). Interestingly, for H = 10 the superior algorithm turns out to be basic

MitISEM and not PMitISEM, which delivers a slightly lower slope for the VaR than

the direct approach.

An important remark must be made on the differences in sampling times between the

Bayesian and the frequentist applications. Any frequentist method is extremely fast

compared to any Bayesian method. Considering Table 2.2.4 for the Bayesian case and

Table 2.3.2 for the frequentist case reveals that in the latter the sampling is usually

faster by two orders of magnitude than in the former. The obvious reason for this

speed of the frequentist sampling is that each logreturn draw y∗(i), i = 1, . . . ,M , is

based on the common value of the parameter θ, fixed at the MLE. Therefore, not only

no time is spent on drawing parameters from the posterior, but also on calculating

the implied time T volatilities h
(i)
T , necessary for prediction of the future volatilities.

In the frequentist case the direct sampling time consists therefore barely of drawing

i.i.d. variates from the Student’s t target (i.e. ε
(i)
1 , . . . , ε

(i)
H ) and running the H-step-

ahead recursion implied by the model to obtain the final PL(y∗(i)) value. When the

QERMit methods are adopted, ε
(i)
h , h = 1, . . . , H are no longer independently drawn

from a univariate target, but from more complex densities with an inner dependence

structure, which makes the sampling more time consuming.

The fact that the direct approach is so fast in the frequentist case results in PMitISEM-

based QERMit methods requiring relatively more time to reach the benchmark 1 digit

precision (with 95% confidence), even though they are characterised by higher slopes.

Fortunately, for QERMit based on basic MitISEM (when it is feasible) our method

requires less time than the direct approach to achieve this benchmark precision level.
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Interestingly, however, both QERMit methods require far fewer draws than the direct

approach to estimate 99% VaR and ES with the above specified precision, which again

needs to be related to the differences in sampling time. Finally, recall once again

that if more precise evaluations are required or a higher confidence for the precision is

considered, the time required would of course change in favour of the QERMit-based

methods, due to their higher slopes.

2.3.2 GAS(1,1)-t

Finally, we turn to the frequentist analysis of the GAS(1,1)-t model applied to the

highly volatile “crisis” data from Section 2.2.2. As in the previous frequentist applica-

tion we fix the model parameters at their MLE values (reported in Table 2.2.5). Hence,

now the future observation disturbances are drawn from the Student’s t distribution

with roughly 7 degrees of freedom.

Table 2.3.3 presents the results for the VaR and ES evaluation (see Appendix 2.C.2 for

the corresponding plots). One can see that also this time the QERMit-based methods

generate much more accurate forecasts. For shorter horizons the NSE for the VaR is 5

to 6 times lower when evaluated with PMitISEM based QERMit than when computed

directly, while for the ES the improvement ranges from 3 to 6 times. For both the

VaR and the ES, the accuracy gain for long horizons is slightly lower, but still above

3 times. The IQR follows a similar pattern to the NSE, with the relative advantage of

the QERMit-based methods being greater for the VaR than for the ES, and gradually

slightly diminishing with the length of the forecast horizon.

Regarding the time-precision trade-off, Table 2.3.4 shows that for all the measure-

horizon combinations we obtain considerable efficiency gains from adopting tail-focused

densities (the visualisation of the results can be found in Appendix 2.D.2). This trans-

lates to fewer draws being required to achieve the 1 digit precision by the QERMit

methods. Due to the specific nature of the frequentist sampling time, the PMitISEM-

based QERMit in some cases requires more time for that purpose, yet with MitISEM

we obtain gains also in this regard. A more demanding precision requirement would

make both QERMit methods more competitive compared to the direct sampling both

in terms of time and draws required.
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H V aRnaive V aRmit V aRpmit ESnaive ESmit ESpmit

10 -7.9417 -7.8999 -7.8988 -9.5686 -9.5494 -9.5218

NSE (0.1496) 0.0256 (0.0179) (0.2284) (0.0900) (0.0633)

IQR [0.1829] [0.0235] [0.0284] [0.3452] [0.1167] [0.0812]

RNE 1.00 1530.93 3129.10 1.00 123.57 249.28

20 -10.7175 -10.7775 -10.7904 -13.0425 -13.1050 -13.1076

NSE (0.2484) 0.0786 (0.0421) (0.3270) (0.0844) (0.0969)

IQR [0.3229] [0.0771] [0.0404] [0.4686] [0.0834] [0.0761]

RNE 1.00 161.73 565.28 1.00 140.24 106.51

40 -14.5069 -14.4811 -14.5548 -17.7166 -17.8923 -17.8710

NSE (0.2999) 0.1981 (0.0630) (0.5337) (0.3440) (0.0913)

IQR [0.3746] [0.3215] [0.0565] [0.8246] [0.2560] [0.0760]

RNE 1.00 25.49 251.59 1.00 8.45 120.01

100 -20.8270 – -20.7822 -26.2797 – -26.1151

NSE (0.7637) (–) (0.0882) (1.1799) (–) (0.0956)

IQR [0.7992] [–] [0.0881] [1.2810] [–] [0.1464]

RNE 1.00 – 128.59 1.00 – 109.42

250 -27.6190 – -27.3962 -35.6952 – -35.4605

NSE (0.7819) (–) (0.1804) (1.3967) (–) (0.3207)

IQR [1.0447] [–] [0.2453] [2.1390] [–] [0.3624]

RNE 1.00 – 30.73 1.00 – 9.73

Missing value (–): it was not possible to generate the particular
result with the corresponding algorithm.

Table 2.3.1: Results for the 99% VaR and ES, in the GARCH(1,1)-t model, based on N = 10000 draws and 20
replications to obtain the numerical standard error (NSE) and the interquartile range (IQR). The RNE is the relative
numerical efficiency, the inverse of the inefficiency factor. The results are obtained using the direct approach (with naive
and adapted candidate distribution in the Metropolis-Hastings algorithm), and the QERMit method (with the basic
MitISEM and PMitISEM methods), respectively.
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Direct QERMit Direct QERMit

H Naive MitISEM PMitISEM Naive MitISEM PMitISEM

Total time

10 0.90 s 1.30 s 2.15 s

20 0.92 s 2.08 s 6.85 s

40 0.96 s 1.17 s 23.98 s

100 1.04 s – 146.35 s

250 1.27 s – 1015.70 s

Construction time Sampling time

10 0.88 s 1.26 s 2.01 s 0.02 s 0.04 s 0.15 s

20 0.89 s 2.04 s 6.53 s 0.03 s 0.05 s 0.33 s

40 0.90 s 1.09 s 23.35 s 0.06 s 0.08 s 0.62 s

100 0.89 s – 144.71 s 0.15 s – 1.63 s

250 0.90 s – 1010.97 s 0.37 s – 4.74 s

VaR slope∗ ES slope∗

10 2,464.45 42,196.32 21,071.42 1,056.97 3,405.84 1,678.66

20 490.24 3452.54 1,719.31 282.90 2,993.64 323.94

40 177.31 300.83 405.28 55.98 99.70 193.33

100 11.44 – 78.70 4.79 – 66.96

250 4.42 – 6.49 1.39 – 2.05

VaR time required∗∗ ES time required∗∗

10 1.51 s 1.30 s 2.08 s 2.34 s 1.71 s 2.92 s

20 4.02 s 2.48 s 7.42 s 6.32 s 2.55 s 11.27 s

40 9.56 s 6.20 s 27.15 s 28.35 s 16.50 s 31.30 s

100 135.22 s – 164.24 s 321.53 s – 167.66 s

250 348.18 s – 1,247.76 s 1,108.99 s – 1,759.19 s

VaR draws required∗∗ ES draws required∗∗

10 343,912 10,037 4,911 801,869 124,356 61,643

20 948,367 95,010 27,184 1,643,393 109,575 144,275

40 1,381,752 602,821 61,078 4,376,720 1,818,906 128,039

100 8,962,809 – 119,498 21,394,002 – 140,435

250 9,395,216 – 500,025 29,977,657 – 1,580,009

Missing value (–): it was not possible to generate the particular
result with the corresponding algorithm.

∗Slope = increase in precision per unit of computing time.

∗∗Required for % estimate with 1 digit of precision (with 95% confidence).

Table 2.3.2: Trade-off of precision versus computing time for the 99% VaR and ES in GARCH(1,1)-t model for
different horizons.
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2.3. FREQUENTIST QERMIT

H V aRnaive V aRmit V aRpmit ESnaive ESmit ESpmit

10 -9.3886 -9.3681 -9.3562 -11.4654 -11.4724 -11.4604

NSE (0.2346) 0.0588 (0.0346) (0.2467) (0.1043) (0.0711)

IQR [0.2717] [0.0677] [0.0430] [0.3244] [0.1365] [0.0797]

RNE 1.00 288.88 835.34 1.00 91.88 198.07

20 -12.5140 -12.4591 -12.5526 -15.3418 -15.4223 -15.4870

NSE (0.3144) 0.1222 (0.0673) (0.4080) (0.2497) (0.0658)

IQR [0.4695] [0.1413] [0.0562] [0.5067] [0.1851] [0.0760]

RNE 1.00 66.96 220.75 1.00 16.04 231.05

40 -16.2119 – -16.3093 -20.4478 – -20.4527

NSE (0.2933) – (0.0769) (0.5824) ( –) (0.0941)

IQR [0.4169] [ –] [0.0991] [0.9540] [ –] [0.1494]

RNE 1.00 – 169.30 1.00 – 112.83

100 -21.4720 – -21.2891 -27.5570 – -27.3327

NSE (0.6093) – (0.1695) (0.8992) ( –) (0.1591)

IQR [0.7680] [ –] [0.1984] [1.2750] [ –] [0.2958]

RNE 1.00 – 34.81 1.00 – 39.50

250 -24.3314 – -24.2340 -32.3997 – -32.2739

NSE (0.7701) – (0.2084) (1.4013) ( –) (0.2369)

IQR [0.9156] [ –] [0.2901] [1.5927] [ –] [0.3614]

RNE 1.00 – 23.02 1.00 – 17.81

Missing value (–): it was not possible to generate the particular
result with the corresponding algorithm.

Table 2.3.3: Results for the 99% VaR and ES, in the GAS(1,1)-t model, based on N = 10000 draws and 20
replications to obtain the numerical standard error (NSE) and the interquartile range (IQR). The RNE is the relative
numerical efficiency, the inverse of the inefficiency factor. The results are obtained using the direct approach (with naive
and adapted candidate distribution in the Metropolis-Hastings algorithm), and the QERMit method (with the basic
MitISEM and PMitISEM methods), respectively.
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Direct QERMit Direct QERMit

H Naive MitISEM PMitISEM Naive MitISEM PMitISEM

Total time

10 4.35 s 0.67 s 3.12 s

20 4.35 s 4.78 s 9.46 s

40 4.38 s – 23.71 s

100 4.48 s – 145.31 s

250 4.85 s – 988.06 s

Construction time Sampling time

10 4.33 s 0.64 s 2.98 s 0.02 s 0.03 s 0.14 s

20 4.31 s 4.73 s 9.16 s 0.03 s 0.05 s 0.29 s

40 4.31 s – 23.10 s 0.06 s – 0.61 s

100 4.32 s – 143.79 s 0.15 s – 1.52 s

250 4.47 s – 983.40 s 0.38 s – 4.66 s

VaR slope∗ ES slope∗

10 974.26 9,752.17 5789.43 880.80 3,101.69 1,372.74

20 293.21 1,389.32 749.19 174.13 332.71 784.13

40 182.63 – 276.93 46.30 – 184.56

100 17.45 – 22.90 8.01 – 25.98

250 4.48 – 4.94 1.35 – 3.82

VaR time required∗ ES time required∗

10 5.91 s 0.80 s 3.24 s 6.08 s 1.14 s 4.09 s

20 9.55 s 5.83 s 11.22 s 13.14 s 9.35 s 11.12 s

40 12.73 s – 28.65 s 37.50 s – 31.43 s

100 92.40 s – 210.89 s 196.11 s – 202.93 s

250 347.47 s – 1,294.69 s 1,140.28 s – 1,385.65 s

VaR draws required∗∗ ES draws required∗∗

10 845,752 53,194 18,395 935,498 167248 77,581

20 1,519,296 229,489 69,609 2,558,257 958,281 66,507

40 1,321,478 – 90,766 5,212,265 – 136,195

100 5,705,631 – 441,394 12,423,807 – 388,979

250 9,112,650 – 667,648 30,176,110 – 862,735

Missing value (–): it was not possible to generate the particular
result with the corresponding algorithm.

∗*Slope = increase in precision per unit of computing time.

∗∗Required for % estimate with 1 digit of precision (with 95% confidence).

Table 2.3.4: Trade-off of precision versus computing time for the 99% VaR and ES in GAS(1,1)-t model for different
horizons.
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2.4 Conclusions

We have proposed an efficient importance sampling based method for the Bayesian

risk evaluation, given a chosen model of volatility. We focus on two standard risk

measures, Value-at-Risk and Expected Shortfall. The proposed method enables an

accurate analysis even for long horizons, such as one-month or one-year-ahead. We

have carried out two empirical studies for daily S&P 500 returns in different time pe-

riods, a calm period and a highly volatile crisis period. Both applications confirm that

our method not only yields more accurate results than the direct sampling approach,

commonly used in practice (see The Volatility Laboratory, 2012), but also achieves

this in a time efficient way, resulting in a considerable gain in terms of time-precision

trade-off. This substantial extension of the applicability of importance sampling to the

simulation of returns for long horizons is to be attributed to the sequential construction

of the marginal and conditional importance densities, which are flexible mixtures of

Student’s t distributions.

The proposed method succeeds also for the frequentist applications, in terms of yield-

ing a higher precision gain for a unit of computing time. However, due to generally

very fast computations in the frequentist case, the advantage of the QERMit method

relative to the direct approach depends on the required precision level or on the chosen

confidence for the precision. We do stress that in the context of long run risk eval-

uation, Bayesian analysis provides a more natural framework due to accounting for

parameter uncertainty.

An interesting and important topic for further research is the application of our method

to a multidimensional case. We intend to investigate portfolios of several assets using

e.g. a copula based on a GAS model for volatility. Nevertheless, already the current

study might be useful in a multidimensional context, since we consider the ES and not

merely the VaR. Because the ES is a subadditive measure, a sum of the ES estimates

for single assets provides a conservative risk measure for a portfolio consisting of these

assets.

Another possible line for further research would be to build on the insights from QER-

Mit in the context of credit risk evaluation. The phenomena of default dependence can

be elegantly captured by Bayesian inference (see McNeil and Wendin, 2007) while im-

portance sampling is an advantageous variance reduction technique also in this context

(see Glasserman and Li, 2005). Analysis of portfolio defaults would naturally require

different modelling techniques, yet the key element of QERMit, i.e. the focus on the

tail, is expected to yield considerable efficiency gains also in this area.
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Appendix 2.A MitISEM Algorithm

2.A.1 Approximation by minimisation of Kullback-Leibler di-

vergence

We want to approximate the target density p̃(θ) of which only the kernel p(θ) is

required with the candidate density qζ(θ), parametrised by vector ζ, such that the

Kullback-Leibler divergence (Kullback and Leibler, 1951)∫
p(θ) log p(θ)dθ −

∫
p(θ) log qζ(θ)dθ (2.A.1)

is minimised. The target density p will usually be the posterior density given the

data y, but we omit the conditioning on y for the notational convenience. Moreover,

we will take as the candidate qζ the mixture of Student’s t distributions, so that the

minimisation will be carried out with respect to the mixture parameters ζ, consisting

of the mixture weights and the modes, scale matrices and degrees of freedom of each

component as well as the number of mixture components H. Since the first term in

(2.A.1) does not depend on ζ, the minimisation of (2.A.1) amounts to the maximisation

of ∫
log qζ(θ)p(θ)dθ =

∫
log qζ(θ)

p(θ)

qζ(θ)
qζ(θ)dθ

= Eqζ

[
log g(θ)

p(θ)

qζ(θ)

]
,

≈ 1

N

N∑
i=1

log qζ(θ
(i))

p(θ(i))

qζ(θ
(i))

=
1

N

N∑
i=1

log qζ(θ
(i))w(θ(i)),

where θ(i) i.i.d.∼ qζold(θ) were drawn from the previous candidate, and

w(θ(i)) =
p(θ(i))

qζ(θ
(i))

. (2.A.2)

Importantly, the draws θ(i), i = 1, . . . , N , and their weights w(θ)(i) are fixed during

the optimization and they do not depend on ζ.
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2.A.2 EM step in MitISEM

Consider a mixture of C Student-t densities

qζ(θ) =
C∑
c=1

ηht(θ|µc,Σc, νc), (2.A.3)

where t(θ|µ,Σ, ν) denotes the d-dimensional Student-t density

td(θ|µ,Σ, ν) =
Γ
(
ν+d

2

)
Γ
(
nu
2

)
(πν)d/2

|Σ|−1/2

(
1 +

(θ − µ)TΣ−1(θ − µ)

ν

)−(d+ν)/2

and ζ = {µc,Σc, νc, ηc}Hh=1 is the set of the mixture parameters: modes, scale matrices,

degrees of freedom and mixing probabilities. The aim is to maximise the weighted

log-density

1

N

N∑
i=1

w(i) log qζ(θ
(i)), (2.A.4)

with respect to ζ, where w(i) = w(θ(i)) = p(θ(i))

qζ(θ(i))
is the importance weight of the draw

θ(i). Using the fact the a Student’s t distribution can be represented as a mixture

of normal distributions with the covariance matrices scaled by the random variables

following an Inverse-Gamma distribution, one can equivalently represent the draws θ(i)

from the mixture (2.A.3) in (2.A.4) as

θ(i) ∼ N (µc, κ
(i)
c Σc), if z(i)

c = 1,

where z(i) ∈ RH is a latent vector from the standard base with one on the place

corresponding to the component h which the draw θ(i) has been drawn from. The

probability P[z(i) = ec] of belonging to the component h is given by ηc. The scaling

factor κ
(i)
c follows the Inverse-Gamma distribution

κ(i)
c ∼ IG(νc/2, νc/2).

Such a representation introduces the latent data θ̃ = {zc, κc}Ch=1 into the logden-

sity log p(θ), so that the standard numerical maximisation of the data-augmented

log p(θ, θ̃|ζ) density is infeasible. To find the optimal mixture parameters ζ one can re-

sort to the expectation-maximisation (EM) algorithm of Dempster et al. (1977), which

allows for the maximum likelihood estimation for the incomplete data problems. The
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core of the procedure is to iterate between two steps, the Expectation step and the

Maximisation step. In the former, one calculates the conditional expectation of the

loglikelihood function with respect to the latent variables θ̃, given the parameter values

from the previous iteration, ζ. In the latter, the expected loglikelihood is maximised

with respect to the parameters.

Expectation step The conditional expectations in the Expectation step are given

by

z̃(i)
c ≡ E

[
z(i)
c

∣∣θ(i), ζ
]

=
ηct(θ

(i)|µc,Σc, νc)∑H
l=1 ηlt(θ

(i)|µl,Σl, νl)
,

z̃/κ
(i)

c ≡ E

[
z

(i)
c

κ
(i)
c

∣∣∣∣∣θ(i), ζ

]
= z̃(i)

c

d+ νc

ρ
(i)
c + νc

,

ξ̃(i)
c ≡ E

[
log κ(i)

c

∣∣θ(i), ζ
]

=

[
log

(
ρ

(i)
c + νc

2

)
− ψ

(
d+ νc

2

)]
z̃(i)
c +

[
log
(νc

2

)
− ψ

(νc
2

)]
(1− z̃(i)

c ),

δ̃(i)
c ≡ E

[
1

κ
(i)
c

∣∣∣∣θ(i), ζ

]
= z̃/κ

(i)

c + (1− z̃(i)
c ),

where ρ
(i)
c = (θ(i) − µc)TΣ−1

c (θ(i) − µc) and ψ denotes the digamma function.

Maximisation step The updates at the iteration L of the Maximisation step are as

follows

µ(L)
c =

[
N∑
i=1

w(i)z̃/κ
(i)

c

]−1 [ N∑
i=1

w(i)z̃/κ
(i)

c θ
(i)

]
,

Σ(L)
c =

∑N
i=1 κ

(i)z̃/κ
(i)

c (θ(i) − µ(L)
c )(θ(i) − µ(L)

c )T∑N
i=1 w

(i)z̃
(i)
c

,

η(L)
c =

∑N
i=1 w

(i)z̃
(i)
c∑N

i=1w
(i)

,

while the updates for the degrees of freedom ν
(L)
c parameters come from solving of the

first-order conditions with respect to νc

−ψ(νc/2) + log(νc/2) + 1−
∑N

i=1w
(i)ξ

(i)
c∑N

i=1w
(i)
−
∑N

i=1w
(i)δ

(i)
c∑N

i=1 w
(i)

= 0.
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A more detailed discussion of the MitISEM algorithm can be found in Hoogerheide

et al. (2012).
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Appendix 2.B PMitISEM Algorithm

Below we present the details of the Partial MitISEM algorithm of Hoogerheide et al.

(2012).

Step 0: Initialisation

θ(i) ∼ gnaive, i = 1, . . . , N

(µnaive = θ̂ ≡ arg maxθ f(θ), Σnaive = −H−1 (log f(θ))|θ=θ̂ )

Step 1: Adaptation

Use {θ(i)}Ni=1 to IS-estimate the mean and the covariance matrix of f by µadapt

and Σadapt.

Use µadapt and Σadapt to construct gadapt.

Set g0 = gadapt.

θ(i) ∼ g0, i = 1, . . . , N .

w
(i)
0 = f(θ(i))

g0(θ(i))
, i = 1, . . . , N .

Step 2: Construction

for s := 1 to S do

Step 2a: ISEM

Run ISEM with {θ(i)}Ni=1 and {w(i)
0 }Ni=1 to optimise Cs components of gs.

(gs(θ) = g(θs|θ1, . . . ,θs−1) for s = 2, . . . , S, and gs(θ) = g(θ1) for s = 1)

Calculate the current weights1 of the draws {θ(i)}Ni=1 from g0 using

the optimised candidate with CS components with formula:

w(i)
curr =

f(θ(i))∏S
k=1 gk(θ

(i))
. (2.B.1)

Compute CoVs for gs using {w(i)
curr}Ni=1.

Step 2b: Iterate

while CoVs not converged do

Find θ̃
j
, j ∈ M, where M is the set of indices of x%

of the draws {θ(i)}Ni=1 which correspond to the highest

weights {w(i)
curr}Ni=1.
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Use {θ̃(j)}j∈M and {w(j)
curr}j∈M to IS-construct the

mode/coefficients and the covariance matrix of the

Cs + 1-th component of gs as µsCs+1/βsCs+1 and Σs
Cs+1.

Update the current mixture gs
2.

Run ISEM with {θ(i)}Ni=1 and {w(i)
0 }Ni=1 to optimise Cs + 1 compo-

nents of the updated gs.

Calculate the new current weights {w(i)
curr}Ni=1 of the

draws {θ(i)}Ni=1 from g0 using the latest candidate with

formula (2.B.1).
(note that now gs is an updated mixture of Cs + 1 components)

Compute CoVs for the latest candidate.

end while

end for

Step 3: Resimulation and convergence check

θi ∼
∏S

s=1 g(s)(θ), i = 1, . . . , N .

w(i) = f(θ(i))∏S
s=1 g(s)(θ

(i))
, i = 1, . . . , N .

Update g to g̃:

for s := 1 to S do

Run ISEM with {θ(i)}Ni=1 and {w(i)}Ni=1 to optimise components of gs to

obtain g̃s .

end for

Calculate the new current weights {w(i)
curr}Ni=1 of the draws {θ(i)}Ni=1 from g

using the optimised candidate g̃ with formula (2.B.1).

If CoV has not converged set g0 := g̃ and w
(i)
0 := w

(i)
curr; else STOP.

1 “Current” because these are not the “real” importance weights as the draws are fixed and coming

from g0, not from the updated candidate.
2 Updating is done in the “standard” way: µsh/βsh, Σsh and νsh for the old components h = 1, . . . , Cs,

remain unchanged; µsCs+1/βsCs+1 and ΣsCs+1 for the new components is are set to the current estimates

based on {θ̃
(j)
}j∈M; νsCs+1 is set to some chosen initial value; ηsh := 0.9ηsh, h = 1, . . . , Cs and

ηCs+1 := 0.1.
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Appendix 2.C Accuracy plots

The plots in this appendix present the accuracy of 99% VaR and ES evaluations ob-

tained with different algorithms. We consider two types of plots, standard box plots

and error bar plots. The motivation behind this particular choice is that the former

plot type is a popular and commonly used in dispersion visualisation, while the latter

is more suited to illustrate the results based on QERMit. The underlying objective of

QERMit is minimisation of the NSE, however this measure is not illustrated in a box

plot, which focuses on the IQR instead. In a sense both plot types provide complimen-

tary information regarding the accuracy of a certain evaluation method. Notice possible

outliers as these might be of crucial importance in the context of risk evaluation.

2.C.1 Bayesian applications

Figure 2.C.1 presents the results for the GARCH(1,1)-t model while Figure 2.C.2 for

the GAS(1,1)-t model. Clearly, the precision of the QERMit-based methods greatly

exceeds the one from both direct approaches. Moreover, the latter often generate

outliers, which may have serious practical consequences.

2.C.2 Frequentist applications

Figure 2.C.3 and Figures 2.C.4 are the frequentist counterparts of those presented in

2.C.1. We can see that the outcomes are similar to the Bayesian ones, with a much

higher accuracy achieved with QERMit than with the direct approach.
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Figure 2.C.1: Accuracy of 99% VaR (left) and ES (right) results for the GARCH(1,1)-t model for different horizons,
based on 20 MC replications. Two left boxes correspond to the direct approach (based on the naive and adapted
candidate, respectively), two right ones – to the QERMit approach (with the candidate constructed with MitISEM and
PMitISEM, respectively). A missing box for the MitISEM-based candidate corresponds to a situation when it was not
possible to construct such a candidate.
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Figure 2.C.2: Accuracy of 99% VaR (left) and ES (right) results for the GAS(1,1)-t model for different horizons,
based on 20 MC replications. Two left boxes correspond to the direct approach (based on the naive and adapted
candidate, respectively), two right ones – to the QERMit approach (with the candidate constructed with MitISEM and
PMitISEM, respectively). A missing box for the MitISEM-based candidate corresponds to a situation when it was not
possible to construct such a candidate.
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Figure 2.C.3: Accuracy of 99% VaR (left) and ES (right) results for the frequentist GARCH(1,1)-t model for
different horizons, based on 20 MC replications. The left boxes correspond to the direct approach (based on the naive
candidate), the middle and the right one – to the QERMit approach (with the candidate constructed with MitISEM
and PMitISEM, respectively). A missing box for the MitISEM-based candidate corresponds to a situation when it was
not possible to construct such a candidate.
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Figure 2.C.4: Accuracy of 99% VaR (left) and ES (right) results for the frequentist GAS(1,1)-t model for different
horizons, based on 20 MC replications. The left boxes correspond to the direct approach (based on the naive candidate),
the middle and the right one – to the QERMit approach (with the candidate constructed with MitISEM and PMitISEM,
respectively). A missing box for the MitISEM-based candidate corresponds to a situation when it was not possible to
construct such a candidate.
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Appendix 2.D Time-precision plots

The plots in this appendix illustrate the time-precision trade-off for 99% VaR and ES

evaluation. Precision is defined as the inverse of the variance of the results obtained in

a Monte Carlo study, where we carried out 20 computations of VaR and ES. Computing

time includes the “fixed cost” for the candidate construction, for which the lines are flat

(negligible yet non-zero for the direct Bayesian methods, and more noticeable for the

QERMit methods). The “variable cost” of the computing time refers to the time needed

to perform a single VaR and ES evaluation, based on N = 10, 000 parameter draws

(for both, the direct and the QERMit approach). Note that the scales for the time axis

differ among horizons. Then the slope of the non-flat part of each line is specified as

the ratio of precision and sampling time. Following Hoogerheide and van Dijk (2010)

we also consider the benchmark line of 1 digit precision with 95% confidence. It is

defined as 1.96NSE ≤ 0.05, which corresponds to the required precision level of 1536,

and is depicted in the plots as a black horizontal line.

2.D.1 Bayesian applications

Figure 2.D.1 presents the results for the GARCH(1,1)-t model and Figure 2.D.2 for the

GAS(1,1)-t. Importantly, for longer horizons (H = 40 and longer) there are no lines

for QERMit based on the MitISEM algorithm, as it was not possible to apply it in

such multidimensional cases. For both models the steepness of the QERMit methods

is higher the for the direct approaches for both VaR and ES evaluations (see Tables

2.2.4 and 2.2.8 for the quantitative results), which means that if a high precision is

required, then the proposed QERMit based methods will need less computing time to

achieve this.

2.D.2 Frequentist applications

Figures 2.D.3 and 2.D.4 are the frequentist counterparts of the time-precision trade-off

plots from Appendix 2.D.1. The main difference between the current plots and the

previous ones is that now there are at most three lines in each plot, as we do not

consider the adaptive direct method for the frequentist applications. Moreover, the

“fixed cost” for the direct approach is exactly zero because is based on sampling of

i.i.d. variates from a univariate standard Student’s t distribution (with the number of

degrees of freedom set equal to its MLE value) and not on a mixture of multivariate
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Student’s t distributions which needs to be constructed. Again, for longer horizons

(H = 100 and over for GARCH and for H = 40 and over for GAS) there are no lines

for QERMit based on MitISEM due to its infeasibility in high dimensions.

Even though for the longest horizons, H ≥ 100 for GARCH and H ≥ 40 for GAS, the

direct approach is faster then QERMit in crossing the benchmark 1 digit precision line,

higher slopes of the latter (see Tables 2.3.2 and 2.3.4) imply that eventually it is more

efficient than the former. Notice, that the 1 digit precision line (with 95% confidence)

was set somewhat arbitrarily and considering a higher confidence would mean a much

higher line. For instance changing of the confidence to 99% would raise it from 1, 536 to

2, 654 so that in more cases less computing time would be needed to reach the required

precision level with the QERMit approaches than with the direct one. This would

be seen as more “crossings” of the lines for the direct and QERMit-based methods

occurring below the required precision line.
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Figure 2.D.1: Precision (1/var) of the estimated VaR (left) and ES (right), as a function of the amount of computing
time for different approaches, for the GARCH(1,1)-t model, for different horizons. The horizontal line corresponds to
a precision of 1 digit (1.96NSE ≤ 0.05). A missing line for the MitISEM-based candidate corresponds to a situation
when it was not possible to construct such a candidate.
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Figure 2.D.2: Precision (1/var) of the estimated VaR (left) and ES (right), as a function of the amount of computing
time for different approaches, for the GAS(1,1)-t model, for different horizons. The horizontal line corresponds to a
precision of 1 digit (1.96NSE ≤ 0.05). A missing line for the MitISEM-based candidate corresponds to a situation when
it was not possible to construct such a candidate.
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Figure 2.D.3: Precision (1/var) of the estimated VaR (left) and ES (right), as a function of the amount of computing
time for different approaches, for the frequentist GARCH(1,1)-t model, for different horizons. The horizontal line
corresponds to a precision of 1 digit (1.96NSE ≤ 0.05). A missing line for the MitISEM-based candidate corresponds
to a situation when it was not possible to construct such a candidate.
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Figure 2.D.4: Precision (1/var) of the estimated VaR (left) and ES (right), as a function of the amount of computing
time for different approaches, for the frequentist GAS(1,1)-t model, for different horizons. The horizontal line corre-
sponds to a precision of 1 digit (1.96NSE ≤ 0.05). A missing line for the MitISEM-based candidate corresponds to a
situation when it was not possible to construct such a candidate.
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Chapter 3

Partially Censored Posterior for

Robust and Efficient Risk

Evaluation

The issue of accurate estimation of the left tail of the predictive distribution of returns

is crucial from the risk management perspective and is thus commonly investigated by

both academics and practitioners. One of the main reasons for its importance is that it

is used to obtain measures of downside risk for investments such as Value-at-Risk (VaR)

and Expected Shortfall (ES), see McNeil and Frey (2000) and McNeil et al. (2015). The

task of tail prediction is a special case of density forecasting where the focus is on a

specific subset of the domain of the predictive distribution. Density forecasting in

general has been rapidly growing in econometrics, finance and macroeconomics due

to increased understanding of the limited informativeness of point forecasts, see Diks

et al. (2011). In contrast to these, density forecasts provide a full insight into the

forecast uncertainty. For a survey of the evolution of density forecasting in economics,

see Aastveit et al. (2018b).

A natural framework, therefore, for analysing density forecasts is the Bayesian frame-

work, as it treats all unobserved quantities as parameters to be estimated; see e.g.

Geweke and Amisano (2010a) for a comparison and evaluation of Bayesian predictive

distributions. This includes the predictions for the observation process. Importantly,

the Bayesian approach incorporates the parameter uncertainty into analysis and facili-

tates dealing with model uncertainty, usually via Bayesian model averaging. However,

the issue of Bayesian model misspecification still seems to be an open question.1 A

1At the time of writing there is an active, ongoing debate in the Bayesian community about the issue
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formal approach to this problem is provided by Kleijn and van der Vaart (2006), who

show (under stringent conditions) that given an incorrectly specified model, the pos-

terior concentrates ‘close’ to the points in the support of the prior that minimise the

Kullback-Leibler divergence with respect to the true data generating process (DGP).

This result can be seen as the Bayesian counterpart of the MLE being consistent for the

pseudo-true values in frequentist statistics. Nevertheless, differently than the asymp-

totic distribution of the MLE, the estimated posterior variance is incorrect in case of

misspecification (Kleijn and van der Vaart, 2006). Müller (2013) shows that one can

rescale the posterior so that credible sets have the correct coverage. As a practical so-

lution to the problem, Geweke and Amisano (2012) apply the so-called model pooling,

which relaxes the key assumption behind model averaging that the true model is in

the set of models under consideration.

In the context of tail forecasting, the crucial question is: what if “close” is not close

enough? From the perspective of accurate tail prediction obtaining estimates being

just “close” to their real values is likely to lead to incorrect risk measures and hence

to poor managerial decisions in cases where the misspecification is severe. To improve

inference on a particular region of the predictive density, Gatarek et al. (2014) intro-

duce the Censored Posterior (CP) for estimation and the censored predictive likelihood

for model combination using Model Averaging. A concept underlying their approach

is the censored likelihood scoring function of Diks et al. (2011), an adaptation (with

specific focus on the left tail) of the popular logarithmic scoring rule, see Hall and

Mitchell (2007) and Amisano and Giacomini (2007). Diks et al. (2011) use the cen-

sored likelihood scoring function only for comparing density forecasts in tails, not for

estimation. The censoring means that observations outside the region of interest are

censored: for those observations only the probability of being outside the region of

interest matters. However, as we discuss in the later part of this chapter, for densely

parametrised models applied in practice the Censored Posterior approach is likely to

lose too much information.

To overcome these shortcomings the first main contribution of this chapter is the novel

concept of the Partially Censored Posterior (PCP), where the set of model parameters

is partitioned into two subsets: the first, for which we consider the standard marginal

posterior, and the second, for which we consider a conditional censored posterior.

In the second subset we choose parameters that are expected to especially benefit

from censoring (due to their particular relationship with the tail of the predictive

of Bayesian model misspecification. Interestingly, it seems that there is no common ground on it
(yet)! See Robert (2017) and Cross Validated (2017).
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distribution). This approach leads to more precise parameter estimation than a fully

censored posterior for all parameters, and has more focus on the region of interest than

the standard Bayesian approach (that is, with no censoring).

The second main contribution is that we introduce two novel simulation methods.

The first method is a Markov chain Monte Carlo (MCMC) method to simulate model

parameters from the Partially Censored Posterior. Here we extend the Mixture of t

by Importance Sampling weighted Expectation-Maximization (MitISEM) algorithm of

Hoogerheide et al. (2012) to propose the Conditional MitISEM approach, where we

approximate the joint censored posterior with a mixture of Student’s t distributions

and use the resulting conditional mixture of Student’s t distributions as a candidate

distribution for the conditional censored posterior. The high quality of the (condi-

tional) candidate distributions leads to a computationally efficient MCMC method.

The second method is an importance sampling method that is introduced to further

decrease the numerical standard errors of the VaR and ES estimators. Here we adapt

the Quick Evaluation of Risk using Mixture of t approximations (QERMit) algorithm

of Hoogerheide and van Dijk (2010) to propose the PCP-QERMit method, where an

adaptation is required since we do not have a closed-form formula for the partially

censored posterior density kernel.

The third main contribution is that we consider the effect of using a time-varying

boundary of the region of interest. To the best of our knowledge, the literature on

the censored likelihood scoring rule, the censored likelihood and the censored posterior

has been limited to a time-constant threshold defining the left tail. However, a con-

stant threshold might be suboptimal when we focus on the left tail of the conditional

distribution (given past observations). Even if the interest is in the unconditional left

tail, then the time-varying threshold may be still more advantageous than the time-

constant one. This is simply because the time-varying threshold allows us to obtain

more information about the left tail of the distribution of the standardized innovations

compared to the time-constant one.

The outline of this chapter is as follows. In Section 3.1 we consider the risk measure

concepts, discuss the censored posterior and present a simple toy example to illustrate

potential benefits and disadvantages of the censored posterior. Moreover, we introduce

our novel concept of the Partially Censored Posterior and the novel simulation methods

of Conditional MitISEM and PCP-QERMit. As an other extension of the existing

literature on censored likelihood based methods, in Section 3.3 we introduce a time-

varying threshold for censoring. In Section 3.4 we provide an empirical application

using a GARCH model with Student’s t innovations for daily IBM logreturns. Section
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3.5 concludes.

3.1 Censored likelihood and censored posterior

Let {yt}t∈Z be a time series of daily logreturns on a financial asset price, with y1:T =

{y1, . . . , yT} denoting the (in-sample) observed data. We denote ys:r = {ys, ys+1, . . . , yr−1, yr}
for s ≤ r. We assume that {yt}t∈Z is subject to a dynamic stationary process parametrised

by θ, on which we put a prior p(θ). We are interested in the conditional predictive

density of yT+1:T+H , given the observed series y1:T . In particular, we are interested in

the standard risk measure given by the 100(1− α)% VaR (in the sense of McNeil and

Frey, 2000), the 100(1−α)% quantile of the predictive distribution of
∑T+H

t=T+1 yt given

y1:T .

100(1− α)% VaR = sup
{
x ∈ R : p(x|y1:T ) ≤ α

}
.

We also consider the ES as an alternative risk measure, due to its advantageous prop-

erties compared to the VaR, mainly sub-additivity (which makes ES a coherent risk

measure in the sense of Artzner et al., 1999):

100(1− α)% ES = E

[
T+H∑
t=T+1

yt

∣∣∣∣∣
T+H∑
t=T+1

yt < 100(1− α)% VaR

]
.

The regular (uncensored) likelihood is given by the standard formula

p(y1:T |θ) =
T∏
t=1

p(yt|y1:t−1,θ)

and the posterior predictive density is

p(yT+1:T+H |y1:T ) =

∫
p(yT+1:T+H |y1:T ,θ)p(θ|y1:T )dθ.

We recall the details of Bayesian forecasting over an out-of-sample period of length H

in Appendix 3.A. Given the data y1:T and a set of parameter draws {θ(i)}Mi=1 from the

posterior, the posterior predictive density can be estimated as:

p(yT+1:T+H |y1:T ) ≈ 1

M

M∑
i=1

p(yT+1:T+H |y1:T ,θ
(i)). (3.1.1)
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As mentioned above, we are interested in a particular region of the predictive dis-

tribution, i.e. the left tail. For generality let us denote the region of interest by

A = {A1, . . . , AT}, where At = {yt|yt < Ct} with threshold Ct potentially time-varying.

For assessing the performance of forecast methods, i.e. comparing accuracy of density

forecasts for such a region, Diks et al. (2011) introduce the censored likelihood scoring

(CLS) function, which Gatarek et al. (2014) employ to define the censored likelihood

(CL), where the CL is obtained by taking the exponential transformation of the CSL.

The CL is given by

pcl(y1:T |θ) =
T∏
t=1

pcl(yt|y1:t−1,θ), (3.1.2)

where pcl(yt|y1:t−1,θ) is the conditional density of the mixed continuous-discrete dis-

tribution for the censored variable ỹt

ỹt =

yt, if yt ∈ At,

Rt, if yt ∈ ACt .
(3.1.3)

Definition (3.1.3) means that the censored variable ỹt is equal to the original one in

the region of interest, while everywhere outside it it is equal to the value Rt ∈ ACt . In

consequence, the distribution of ỹt is mixed: continuous (in At) and discrete (in Rt).

We have

pcl(yt|y1:t−1,θ) = [p(yt|y1:t−1,θ)]I{yt∈At} ×
[
P(yt ∈ ACt |y1:t−1,θ)

]I{yt∈ACt }
= [p(yt|y1:t−1,θ)]I{yt∈At} ×

[∫
ACt

p(x|y1:t−1,θ)dx

]I{yt∈ACt }
. (3.1.4)

Differently than with a likelihood of a censored dataset where all yt ∈ ACt are censored

and their exact values are completely ignored, with the censored likelihood the exact

value of yt ∈ ACt still plays a role in conditioning in subsequent periods, in the sense

that we condition on the uncensored past observations yt−1, yt−2, . . .. Only in the

case of i.i.d. observations when p(yt|y1:t−1,θ) = p(yt|θ) both approaches would be

equivalent. We do this for two reasons. First, the purpose is to improve the left-

tail prediction based on the actually observed past observations. By censoring the

past observations yt−1, yt−2, . . . we would lose valuable information. Second, it would

typically be much more difficult to compute the likelihood for censored data (where

one would also condition on censored past observations). Therefore, the (Partially)
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Censored Posterior is a quasi -Bayesian concept.

Gatarek et al. (2014) use the CL to define the censored posterior (CP) density as

pcp(θ|y1:T ) ∝ pcl(y1:T |θ)p(θ), (3.1.5)

where p(θ) is the prior density kernel on the model parameters. Typically, the censored

posterior density pcp(θ|y1:T ) is a proper density in the same cases (i.e., under the same

choices of the prior p(θ)) where the regular posterior p(θ|y1:T ) is a proper density (i.e.,

with finite integral
∫
pcl(y1:T |θ)p(θ)dθ <∞), as long as there are enough observations

yt ∈ At that are not censored.

3.1.1 Scoring rules in density forecasting

Below we briefly recall the basic concepts related to scoring rules used for comparing

accuracy of density forecasts. A scoring rule S is a loss function depending on the

forecast density and the data, typically used to perform Diebold and Mariano (1995,

DM) tests of equal predictive accuracy. The DM test is based on the average differential

d̄T,H of two log scores for a sequence of H one-step-ahead forecasts

d̄T,H =
1

H

H∑
h=1

dh,

dh = S(p(yt+h|y1:T ,M1))− S(p(yt+h|y1:T ,M2)). (3.1.6)

Notice that in (3.1.6) p(yt+h|y1:T ,Mi) is not a predictive distribution but its evaluation

on the realised value of yt+h (as opposed to y∗h), where the predictive distribution

originates from a method Mi
2 The test statistic has the form

tT,H =
d̄T,H√
σ̂2
T,H/H

, (3.1.7)

where σ̂2
T,H is a heteroskedasticity and autocorrelation-consistent variance estimator of

the variance σ2
T,H .

To begin with, we discuss presumably the most popular scoring rule, the log score, see

Hall and Mitchell (2007) and Amisano and Giacomini (2007). Next, we present the

censored likelihood scoring rule of Diks et al. (2011), which is the basis for the family

2In this chapter by a “method” we understand an an estimation method, but we note that often it is
understood as an econometric model.
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of censored posterior methods and which we use in our empirical study in Section 3.4

to compare the forecasting performance of competing estimation methods.

The popular log score rule is based on the Kullback-Leibler Information Criterion

(KLIC), which is an information theoretic goodness-of-fit measure. Formally, for the

density forecast p(yt+h|y1:T ,M) obtained by a method M, the KLIC defined as

KLIC [p(yt+h|y1:T ,M)] = Et [log p̃(yt+h)− log p(yt+h|y1:T ,M)]

=

∫
p̃(yt+h) log

(
p̃(yt+h)

p(yt+h|y1:T ,M)

)
dyt+h,

where p̃t+h denotes the true conditional density. Diks et al. (2011) show that for two

competing density forecasts from methods M1 and M2, their relative KLIC values

correspond exactly to the difference of their logarithmic scoring rules, with S in (3.1.6)

specified as

S(p(yt+h|y1:T ,M)) = log p(yt+h|y1:T ,M).

The logarithmic scoring rule assigns a high score to a density forecast if the observation

yt+h falls within a region with high predictive density p(yt+h|y1:T ,M), and a low score

if the observation yt+h is unlikely given the constructed forecast.

In terms of tail forecasting, where the events are rare by definition, taking into account

the total probability of the region of interest is crucial from forecasting perspective,

as noted by Diks et al. (2011). Yet some region-focused score functions, such as the

weighted logarithmic scoring rule of Amisano and Giacomini (2007), simply ignore the

observations outside the region of interest. In consequence the information on how

frequently the region of interests occurs is lost and the scoring rule is improper 3. As

a possible solution to this problem Diks et al. (2011) specify the censored likelihood

score function as

Scls(p(yT+h|y1:T ,M)) = I(yT+h ∈ AT+h) log p(yT+h|y1:T ,M)

+ I(yT+h ∈ AcT+h) log

(∫
AcT+h

p(s|y1:T ,M)ds

)
.

(3.1.8)

This scoring rule does not neglect observations falling outside the region of interest

3An improper scoring rule may favour (i.e. assign a higher average score) an incorrect density forecast
over the true conditional density. This can happen if the incorrect density forecast simply puts more
probability mass in the region of interest.
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but only as far as their total mass is concerned; the shape of the predictive density

over AcT+h is ignored. Given a set of parameter draws {θ(i)}Mi=1 the first term on the

right hand side of (3.1.8), i.e. the part of corresponding to the region of interest AT+h,

can be approximated using (3.1.1). Suppose that the region of interest is chosen to be

the tail of the conditional predictive distribution AT+h = {yT+h : yT+h ≤ CT+h}, for a

chosen value of CT+h. Then the second term on the right hand side of (3.1.8), i.e. the

“normalising” part corresponding to the complement of the region of interest AcT+h, is

given by ∫
AcT+h

p(s|y1:T ,M)ds =

∫ ∞
CT+h

p(s|y1:T ,M)ds

= 1−
∫ CT+h

−∞
p(s|y1:T ,M)ds

= P (CT+h|y1:T ,M),

where P (·|y1:T ,M) is the predictive cumulative distribution function. For a set of

parameter draws {θ(i)}Mi=1 the latter can be approximated by

P (CT+h|y1:T ,M) ≈ 1

M

M∑
i=1

P (CT+h|y1:T ,θ
(i),M),

P (CT+h|y1:T ,θ
(i),M) =

∫ CT+h

−∞
p(s|y1:T ,θ

(i))p(θ(i)|y1:T )ds.

3.1.2 Advantages and disadvantages of CP: toy application

To illustrate the advantages and disadvantages of estimation based on the censored

posterior, we start with a toy simulation study in which we consider as the data gener-

ating process (DGP) for yt an i.i.d. split normal SN (µ, σ2
1, σ

2
2) model. The split normal

density, analysed by e.g. Geweke (1989) and De Roon and Karehnke (2016), is given

by

p(yt) =

φ(yt;µ, σ
2
1), yt > µ,

φ(yt;µ, σ
2
2), yt ≤ µ,

where φ(x;m, s) denotes the Gaussian density with mean m and variance s evaluated

at x. The mean of a random variable distributed according to SN (0, σ2
1, σ

2
2), i.e. with

a split at zero, is equal to −σ2−σ1√
2π

, which is non-zero for any asymmetric case. Hence,

shifting of the split point accordingly to the chosen variances allows us to consider a
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zero-mean random variable: yt ∼ SN (µ, σ2
1, σ

2
2) with µ := σ2−σ1√

2π
results in E[yt] = 0.

Such a specification is then equivalent to yt = µ+ εt with εt ∼ SN (0, σ2
1, σ

2
2).

We consider two cases of the true parameters of the DGP: a symmetric case with σ1 = 1

and σ2 = 1; and an asymmetric case with σ1 = 1 and σ2 = 2. In that latter case we

set µ = 1√
2π

to impose E[yt] = 0. For both cases we generate T = 100, T = 1000 and

T = 10000 observations from the true model. We are interested in evaluating the 95%

and 99% VaR, i.e. in the estimation of the 5% and 1% quantiles of the distribution

of yt. For the symmetric case the true values for these quantities are −1.6449 and

−2.3263, while for the asymmetric case −2.8908 and −4.2538.

For each case we estimate an i.i.d. normal model with unknown mean µ and variance

σ2. We specify the usual non-informative prior p(µ, σ) ∝ 1
σ

(for σ > 0). We perform an

estimation based on the uncensored posterior and two specifications for the censored

posterior. In each the threshold value C is constant over time, At = {yt : yt ≤ C}, and

we consider two different values for the threshold C: one equal to the 10% quantile

of the generated sample and another one equal to zero, where in both cases all the

uncensored observations stem from the left half of the distribution. All the simulations

are carried out with M = 10000 posterior draws after a burn-in of 1000 using an

independence chain Metropolis-Hastings (IC-MH) algorithm with target density kernel

(3.1.5) the candidate density being a single Student’s t distribution.

Tables 3.1.1a and 3.1.1b report simulation results for 100 Monte Carlo (MC) experi-

ments for the symmetric and asymmetric case, respectively. Figure 3.1.1 presents kernel

density estimates of the asymmetric case for a single simulation for T = 1000; we refer

to Appendix 3.C.1 for the plots for the remaining cases. In the misspecified case the

regular posterior provides incorrect estimates from the left tail perspective, because the

estimated model aims to approximate the distribution over the whole domain. The CP

provides parameter estimates with a much better location (regarding the left tail of the

predictive distribution) by focusing on the relevant region. The cost of a better loca-

tion is, however, a larger variance of the estimates since censoring leads to an analysis

based on effectively a smaller sample. Obviously, the precision of the estimates from

the CP depends on the degree of censoring: the more censoring, the less information,

the lower the precision. In the symmetric case we can see that, as expected, the only

cost of censoring is a higher variance, but the locations of the regular posterior and the

CP are similar. We observe that for the larger datasets (T = 1000 and T = 10000) the

VaR from the regular posterior is only slightly better (in the sense of a slightly smaller

MSE) in the case of no misspecification (with a normal DGP), whereas in the case

of misspecification (with a split normal DGP) the censored posterior leads to much
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more accurate VaR estimates. However, the VaR is substantially better for the regular

posterior than for the censored posterior in case of a small dataset (T = 100) where

the loss in precision due to censoring has a severe effect. We introduce the Partially

Censored Posterior (PCP) in the next subsection, exactly for the reason of limiting

this harmful effect of loss of information due to censoring.

-1 -0.5 0 0.5 1 1.5 2
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2
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Uncensored CP 10% CP 0 True

Figure 3.1.1: Estimation results in i.i.d. normal N(µ, σ2) model for T = 1000 observations from DGP of i.i.d. split
normal (σ1 = 1, σ2 = 2). Kernel density estimates of regular posterior and censored posterior (CP) with two different
thresholds, at 0 (CP0) and at the 10% data percentile (CP10%) together with the true parameter values (corresponding
to left tail).

3.2 Partially Censored Posterior

The previous subsection illustrated the advantages and disadvantages of the CP with

respect to obtaining accurate evaluations of lower quantiles of the predictive posterior

distribution: the CP has clearly a better location in case of misspecification, but this

comes at the price of a lower precision of the estimates. Moreover, the estimated

i.i.d. normal model had only 2 parameters whereas obviously most models have many

more parameters, so that obtaining precise estimates becomes even harder. However,

not all of the parameters are typically expected to particularly relate to the region

of interest of the predictive distribution. For this reason we propose the Partially

Censored Posterior, where only a selected subset of parameters is estimated with the

conditional CP, while for the remaining parameters we consider the regular posterior.

3.2.1 Definition and MCMC algorithm Conditional MitISEM

Below we formally define the Partially Censored Posterior (PCP) and devise an MCMC

algorithm to simulate from it. The PCP is a novel concept based on combining the

standard posterior for the “common” parameters and the Censored Posterior of Gatarek
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Table 3.1.1: Estimation results in i.i.d. normal N (µ, σ2) model for data from DGP of i.i.d. normal N (µ = 0, σ = 1)
and i.i.d. split normal SN (µ, σ1 = 1, σ2 = 2). Simulation results for the regular posterior and for the censored posterior
with two different thresholds, at 0 (CP0) and at the 10% data percentile (CP10%). Standard deviations in parentheses.
MSEs in brackets, with the best MSE in bold.
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et al. (2014) for the parameters that particularly affect the properties of the region of

interest. Consider a vector of model parameters θ and suppose that some subset of

parameters, call it θ2, is particularly related to the (left) tail of the distribution so

that it may benefit from censoring, while the other parameters, in the subset θ1, would

not benefit from censoring, or could even be adversely affected by censoring. In other

words, we consider a partitioning θ = (θ′1,θ
′
2)′. How this partitioning is done depends

on the model under consideration. We propose that a sensible way is to collect in

θ2 the parameters determining the shape of the conditional distribution of yt (e.g.,

the degrees of freedom parameter of a Student’s t distribution, the shape parameter

of a generalized error distribution), but also parameters for the (unconditional) mean

and variance. Next, we propose to collect in θ1 the other parameters, such as the

coefficients determining the dynamic behaviour of the conditional mean/variance in

ARMA/GARCH models.

Definition and algorithm We define the PCP as

ppcp(θ1,θ2|y) = p(θ1|y)pcp(θ2|θ1,y),

where y denotes the observed data, p(θ1|y) is the standard marginal posterior of θ1

and pcp(θ2|θ1,y) is the conditional censored posterior of θ2 given θ1. For a given value

of θ1, a kernel of the conditional censored posterior density of θ2 given θ1 is given by:

pcp(θ2|θ1,y) =
pcp(θ1,θ2|y)

pcp(θ1|y)
∝ pcp(θ1,θ2|y) ∝ p(θ1,θ2)pcl(y|θ1,θ2),

with prior density kernel p(θ1,θ2) and censored likelihood pcl(y|θ1,θ2) in (3.1.2). We

propose the following MCMC procedure to simulate from the PCP, the Conditional

MitISEM method.

1. Simulate (θ
(i)
1 ,θ

(i)
2 ), i = 1, . . . ,M, from posterior p(θ1,θ2|y) using the IC-MH

algorithm, using as a candidate density a mixture of Student’s t densities ob-

tained by applying the Mixture of t by Importance Sampling weighted Expectation-

Maximization (MitISEM) algorithm of Hoogerheide et al. (2012) to the posterior

density kernel p(θ1,θ2|y).

2. Keep θ
(i)
1 and ignore θ

(i)
2 , i = 1, . . . ,M .

3. For each θ
(i)
1 simulate θ

(i,j)
2 , j = 1, . . . , N, from the conditional censored posterior

pcp(θ2|θ(i)
1 ,y).
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(a) Construct joint candidate density qmit(θ1,θ2), a mixture of Student’s t den-

sities obtained by applying the MitISEM algorithm to the censored posterior

density kernel pcp(θ1,θ2|y).

(b) Use conditional candidate density qcmit(θ2|θ1 = θ
(i)
1 ), the mixture of Stu-

dent’s t densities implied by the joint candidate density qmit(θ1,θ2), as a

candidate density to simulate θ
(i,j)
2 from pcp(θ2|θ(i)

1 ,y) in a run of the inde-

pendence chain MH algorithm.

The use of MitISEM in step 3a implies that this step is efficiently performed with a

relatively high acceptance rate in the IC-MH algorithm. To perform the conditional

sampling in step 3b we use the fact that the conditional distribution of a joint mixture

of Student’s t distributions is itself a mixture of Student’s t distributions and we provide

its details in Appendix 3.B.

This implies that if we have obtained qmit(θ1,θ2), a mixture of Student’s t densities

that approximates the joint censored posterior pcp(θ1,θ2|y), then we can use the M

implied conditional mixtures of Student’s t densities qcmit(θ2|θ1 = θ
(i)
1 ), (i = 1, . . . ,M),

as candidate densities for pcp(θ2|θ(i)
1 ,y) (i = 1, . . . ,M). Hence, we only need one

MitISEM approximation to obtain all the conditional candidate densities. In step 3b

we do need a separate run of the IC-MH algorithm to simulate θ
(i,j)
2 for each given θ

(i)
1

(i = 1, . . . ,M). However, given the typically high quality of the conditional MitISEM

candidate density, a small burn-in will typically suffice, after which we can choose to

use N = 1 draw θ
(i,j)
2 . Note that step 3b can be performed in a parallel fashion. As

an alternative, to further speed up the simulation method with only a small loss of

precision, we can also choose to use N ≥ 2 draws θ
(i,j)
2 (j = 1, . . . , N) from each run,

for example N = 10, combined with a thinning approach for θ
(i)
1 , where only every

Nth draw of θ
(i)
1 is used.

3.2.2 Variance reduction with PCP-QERMit

Putting much effort in obtaining more accurate estimates of risk measures such as VaR

and ES, using the specific left-tail focus of the PCP, might be wasteful if counteracted

by large simulation noise affecting these estimates (i.e. high numerical standard errors).

Hence, we aim to increase numerical efficiency of the proposed PCP method. For this

purpose, we adapt the Quick Evaluation of Risk using Mixture of t approximations

(QERMit) algorithm of Hoogerheide and van Dijk (2010) for efficient VaR and ES

estimation.
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QERMit is an importance sampling (IS) based method in which an increase in ef-

ficiency is obtained by oversampling “high-loss” scenarios and assigning them lower

importance weights. The theoretical result of Geweke (1989) prescribes that the opti-

mal importance density (in the sense of minimising the numerical standard error for a

given number of draws) for Bayesian estimation of a probability of a given set (here,

the left tail of the predictive distribution) should be composed of two equally weighted

components, one for the high-loss scenarios (corresponding to the tail) and one for

remaining realisations of returns. I.e. there is a 50%-50% division between “high-loss”

draws and other draws. Such an approach allows for a substantial increase in efficiency

compared to the so-called direct approach for VaR evaluation, in which predictions are

obtained by simply sampling future innovations from the model and combining these

with the posterior draws of model parameters to generate future paths of returns. One

then simply computes the VaR estimate as the required percentile of the sorted (in

ascending order) simulated returns. The QERMit method of Hoogerheide and van

Dijk (2010) works for the regular (uncensored) Bayesian approach, i.e. based on the

regular posterior and the regular predictive distribution. This method does require

a closed-form formula for the target density, which is used as the numerator of the

IS weights in the final step where the draws from the importance density are used to

estimate the VaR. In case of the PCP we do not have a closed-form formula for the

target density ppcp(θ1,θ2|y) = p(θ1|y)pcp(θ2|θ1,y), since we do not have closed-form

formulas for the density kernels p(θ1|y) and pcp(θ2|θ1,y).

New IS algorithm To overcome this problem, we propose a new IS-based method to

reduce the variance of the H-step-ahead VaR estimator obtained with the PCP. Given

the draws of (θ
(i)
1 ,θ

(i)
2 ), i = 1, . . . ,M , from the PCP, we aim to sample the future

innovations in the model εT+1:T+H conditionally on (θ
(i)
1 ,θ

(i)
2 ) such that the resulting

joint draws (θ
(i)
1 ,θ

(i)
2 , εT+1:T+H) will lead to “high losses”. This relates to the idea of

oversampling the negative scenarios underlying the QERMit approach of Hoogerheide

and van Dijk (2010), however we do not require to evaluate the target density kernel

of the PCP. The proposed PCP-QERMit algorithm proceeds as follows.

1. Preliminary steps

(a) Obtain a set of draws from the PCP, (θ
(i)
1 ,θ

(i)
2 ), i = 1, . . . ,M , using the

Conditional MitISEM algorithm of the previous subsection.

(b) Simulate future innovations ε
(i)
T+1:T+H from their model distribution.

(c) Calculate the corresponding predicted returns y
(i)
T+1:T+H .
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(d) Consider those joint draws (θ
(i)
1 ,θ

(i)
2 , ε

(i)
T+1:T+H) that have led to e.g. the

10% lowest returns
∑T+H

t=T+1 y
(i)
t (the “high loss draws”).

2. High loss draws

(a) Use the “high loss draws” from step 1d to approximate the joint PCP

“high-loss” density of θ and εT+1:T+H with a mixture of Student’s t densi-

ties qmit(θ1,θ2, εT+1:T+H) by applying the MitISEM algorithm to the draws

(θ
(i)
1 ,θ

(i)
2 , ε

(i)
T+1:T+H).

(b) Sample ε̃
(i)
T+1:T+H |θ

(i)
1 ,θ

(i)
2 , i = 1, . . . ,M , from its conditional importance

density (aimed at high losses) qcmit(εT+1:T+H |θ(i)
1 ,θ

(i)
2 ), the conditional mix-

ture of Student’s t distributions implied by qmit(θ1,θ2, εT+1:T+H) (see Ap-

pendix 3.B).

3. IS estimation of the VaR (or ES)

(a) Compute the importance weights of the draws (θ
(i)
1 ,θ

(i)
2 , ε̃

(i)
T+1:T+H), i =

1, . . . ,M , as

w(i) =
p(ε̃

(i)
T+1:T+H |θ

(i)
1 ,θ

(i)
2 )

q(ε̃
(i)
T+1:T+H |θ

(i)
1 ,θ

(i)
2 )

,

where the numerator p(ε
(i)
T+1:T+H |θ

(i)
1 ,θ

(i)
2 ) is simply the density of the inno-

vations in the model (and where the kernel of the partially censored poste-

rior density ppcp(θ1,θ2|y) = p(θ1|y)pcp(θ2|θ1,y) drops out of the importance

weight, as it appears in both numerator and denominator).

(b) Compute the future returns y
(i)
T+1:T+H corresponding to the joint draws

(θ
(i)
1 ,θ

(i)
2 , ε̃

(i)
T+1:T+H), i = 1, . . . ,M , and the resulting total return over H

periods
∑T+H

t=T+1 yt.

(c) Estimate the 100(1− α)%VaR as the value C such that

P̂

(
T+H∑
t=T+1

yt < C

)
= α,

with

P̂

(
T+H∑
t=T+1

yt < C

)
=

1

M

M∑
i=1

w(i)I

(
T+H∑
t=T+1

y
(i)
t < C

)
,
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where I(·) denotes the indicator function.

For the ES the method continues in a similar fashion. Step 2b is crucial in the above

algorithm, as it allows us to “guide” the future disturbances to the “high-loss” region

without the necessity of evaluating the kernel of the partially censored posterior density

ppcp(θ1,θ2|y) = p(θ1|y)pcp(θ2|θ1, y). Note that we do not need to use the 50%-50%

division between “high-loss” draws and other draws, which was the case in the regular

QERMit method for Bayesian VaR/ES prediction, but we can fully focus on the high

losses. Such a concentration of all the mass of the importance density in the “high-

loss region” is valid since we do not use the self-normalised IS weights w(i)/
∑M

j=1w
(j).

Normalising of the IS weights is typically necessary in Bayesian IS estimation as often

only the posterior kernel is available. Since we have the exact target and candidate

densities of the innovations εT+1:T+H , we use the unscaled IS weights w(i) that only

matter for “high-loss” draws with indicator I
(∑T+H

t=T+1 y
(i)
t < C

)
= 1.

Illustration To illustrate the benefits of the PCP-QERMit method we consider a

simple example involving the AR(1) model. Building upon the toy example from

Subsection 3.1.2, we consider the true DGP of the form

yt = µ+ ρyt−1 + εt,

with split normally distributed innovations εt ∼ SN (δ, σ2
1, σ

2
2) with δ = σ2−σ1√

2π
so that

E(εt) = 0. We simulate T = 1000 observations from the model with µ = 0, σ1 = 1,

σ2 = 2 and ρ = 0.8.

We estimate the AR(1) model with normally distributed innovations εt ∼ N (0, σ2).

The priors for µ and σ are the same as in the i.i.d. case, while for ρ we adopt a uniform

prior over the stationarity region (i.e. |ρ| < 1).

We estimate the 1-step-ahead 99.5%, 99% and 95% VaR and ES (and compute the

numerical standard error from 50 MC replications) using the PCP where θ1 = {ρ}
stems from the regular marginal posterior, whereas θ2 = {µ, σ} stems from the condi-

tional censored posterior. Both the PCP direct approach (Conditional MitISEM) and

the PCP-QERMit method make use of 10, 000 draws. (The PCP has a time-constant

threshold Ct given by the 10% quantile of the in-sample data.) Table 3.2.1 shows

the results, where the smaller numerical standard errors stress the usefulness of the

PCP-QERMit method for obtaining more accurate estimates of both VaR and ES.
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Risk measure PCP direct approach PCP-QERMit
99.5% VaR -4.3557 -4.3379

[0.1050] [0.0500]
99.5% ES -4.9877 -4.9786

[0.1328] [0.0830]

99% VaR -3.8461 -3.8308
[0.0813] [0.0340]

99% ES -4.5311 -4.5183
[0.1003] [0.0587]

95% VaR -2.4682 -2.4675
[0.0429] [0.0100]

95% ES -3.3130 -3.3055
[0.0524] [0.0228]

Table 3.2.1: Estimated 1-step-ahead 99.5%, 99% and 95% VaR and ES (and numerical standard error from 50
MC replications within brackets) for estimated AR(1) model with normally distributed innovations, for T = 1000
observations from DGP of AR(1) model with split normally distributed innovations (σ1 = 1, σ2 = 2). The PCP direct
approach (Conditional MitISEM) and PCP-QERMit method make use of 10000 draws. (The PCP has a time-constant
threshold Ct given by the 10% quantile of the in-sample data.)

3.2.3 Simulation study: AR(1) model

Below, we compare the quality of the left-tail density forecasts from the PCP with

the regular posterior and the full CP. We consider the same estimated model and the

same DGP as in the previous subsection: an estimated AR(1) model with normally

distributed innovations for data from an AR(1) model with split normally distributed

innovations.

We keep µ = 0, ρ = 0.8 and σ1 = 1 in the DGP. We do vary the level of misspecification

by considering the correctly specified case of σ2 = 1 and the misspecified cases of

σ2 = 1.5 and σ2 = 2. Further, we analyse the effect of the sample size T by considering

estimation windows of size T = 100, 200, 500 and 1000.

For each DGP we consider 1000 out-of-sample observations for 20 simulated datasets,

where for each observation we compute the (one-step-ahead) censored likelihood score

function (3.1.8) of Diks et al. (2011) (with time-constant threshold Ct = C given by

the 5% quantile of the returns). For each simulated dataset we compute the Diebold-

Mariano test statistic (with Newey-West standard error; see Diebold and Mariano,

1995), where the loss differential is the difference in the censored likelihood score func-

tion. We use the average of the 20 Diebold-Mariano test statistics to test the null

hypothesis of equal left-tail density prediction, where the critical values in a two-sided

test at 5% significance are simply given by ± 1.96√
20
≈ ±0.44 (as the 20 simulated datasets

are independent, and the test statistics have approximately the standard normal dis-
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tribution under the null).

Tables 3.2.2a–3.2.2c show the results. We observe the following findings. First, as

expected, in the case without misspecification (σ2 = 1), the regular posterior performs

better than the PCP or CP. In this case it is obviously optimal to use all (uncensored)

observations. Moreover, in this case, the PCP performs better than the CP, as “the less

censoring, the better”. Second, in the cases of misspecification and a large estimation

window (T = 500 or T = 1000) the PCP and CP outperform the regular posterior. The

more severe the misspecification, the smaller the sample size T for which censoring be-

comes beneficial. Third, in the case of misspecification and a small estimation window

(T = 100 or T = 200) the regular posterior outperforms the CP and the PCP, caused

by the loss of information due to censoring. Fourth, the PCP is never significantly out-

performed by the CP. In the case of misspecification and a large estimation window,

we do not reject the equality of their performance. In the cases of no misspecification

and/or a small estimation window the PCP significantly outperforms the CP.

3.3 Time-varying threshold

Notice that the region of interest At used to define the censored variable in (3.1.3)

is potentially time-varying. However, to the best of our knowledge, the literature

on the censored likelihood scoring function, the censored likelihood and the censored

posterior has been limited to a time-constant threshold. Gatarek et al. (2014) set the

“censoring boundary” to the 20% or 30% percentile of the estimation window, leaving

the topic of a time-varying threshold for further research. Opschoor et al. (2016) focus

on the 15% percentile of a two-piece Normal distribution or a certain percentile (15%

or 25%) of the empirical distribution of the data. Diks et al. (2011) investigate the

impact of a time-varying threshold, which, however, is understood slightly differently.

These authors evaluate the forecasting methods using a rolling window scheme and set

the time-varying constant equal to the empirical quantile of the observations in the

relevant estimation window. Obviously, a time-constant threshold implied by a certain

empirical percentile differs between different data windows.

However, a constant threshold might be suboptimal when we focus on the left tail of

the conditional distribution (given past observations). Even if the interest is in the

unconditional left tail, so only in the most negative returns, then the time-varying

threshold might be still more advantageous than the time-constant one. This is simply

because the time-varying threshold provides more information about the left tail of the

distribution of the standardized innovations compared to the time-constant one.
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T σ2 = 1 σ2 = 1.5 σ2 = 2

100 7.379*** 5.868*** 2.137***

200 4.315*** 1.097*** -0.872***

500 5.261*** -0.367 -1.221***

1000 2.026*** -0.959*** -1.648***

(a) Posterior vs PCP.

T σ2 = 1 σ2 = 1.5 σ2 = 2

100 4.471*** 3.957*** 1.894***

200 2.987*** 1.458*** -0.739***

500 1.923*** 0.065 -1.370***

1000 1.084*** -0.778*** -1.810***

(b) Posterior vs CP.

T σ2 = 1 σ2 = 1.5 σ2 = 2

100 -1.561*** -2.157*** -2.312***

200 -2.041*** -0.924*** -0.419*

500 -1.410*** -0.135 0.320

1000 -0.857*** 0.031 -0.157

(c) CP vs PCP.

Table 3.2.2: Left-tail density forecast comparison based on the censored likelihood score function (3.1.8) (with time-
constant threshold Ct = C given by the 5% quantile of the returns) between three estimation methods, the regular
posterior, the full CP and the PCP. The tables show the average of 20 Diebold-Mariano test statistics (with Newey-West
standard errors) for 20 simulated data sets. The loss differential (computed for 1000 out-of-sample observations for each
simulated dataset) is the difference in the censored likelihood score function (3.1.8). Positive values indicate superior
left-tail forecast performance of the CP; negative values indicate superior left-tail forecast performance of the PCP. The
significance (in a two-sided test) is indicated by * for p ≤ 0.1, ** for p ≤ 0.05 and *** for p ≤ 0.01. Bold numbers
indicate a significantly better performance of our proposed PCP approach (at 5% significance level).

Therefore, we consider the time-varying threshold Ct given by a certain percentile of

the estimated conditional distribution of yt (given the past) that is implied by the

Maximum Likelihood Estimate (MLE) θ̂ML. Note that the threshold Ct must be

equal for all draws θ(i) (i = 1, . . . ,M) from the (partially) censored posterior, as the

threshold Ct affects the (partially) censored posterior. Making Ct depend on draws

θ(i) (i = 1, . . . ,M) from the (partially) censored posterior would lead to a circular

reasoning. Hence, the MLE θ̂ML provides a usable solution. As an alternative, one

could use the regular posterior mean of θ.

The above discussion relates to estimation based on a censored posterior. However,

note that the choice of a threshold CT+1 can also be important for the assessment

of the quality of the left-tail prediction. Indeed, (3.1.8) can be computed with time-

varying CT+1. In our empirical study in Section 3.4 we consider, next to the standard
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time-constant threshold for the CSL rule (the 10% percentile of the in-sample data),

a time-varying threshold given by the 10% percentile of the MLE-implied conditional

distribution.

Simulation study: GARCH(1,1) and AGARCH(1,1) models Our aim in the

remaining part of this section is threefold. First, we investigate the role of the exact

model specification on the usefulness of the PCP. There exists an immense amount

of models of volatility, including an extensive family of GARCH-type models, see

Bollerslev (2008) but also recently introduced Generalized Autoregressive Score models

(GAS) of Creal et al. (2013). Not all model specifications may be expected to equally

benefit from censoring. In other words, we consider the robustness of our results for

different model specifications, where for the practical usefulness of the PCP its use

should not only be beneficial in certain “convenient” models. That is, preferably one

does not need to particularly adapt the model specification in order to make the PCP

useful.

Second, we check what gains can be obtained from censoring with small and large

estimation windows. Intuitively, partial censoring should be particularly useful for

smaller datasets as then there is not enough information over the region of interest to

accurately estimate the fully censored parameter vector.

Third, we analyse how extreme the tails need to be for censoring-based methods to

be beneficial. For instance, the Basel requirement involves the 99% VaR, so the 1%

percentile. However, for more conservative risk managers the 99.5% VaR may be of

interest, while more “risk-seeking” approaches may consider the 95% VaR. One may

expect that the focus on the left tail during the estimation is particularly useful when

one is interested in the deep tail4.

For illustration, consider the DGP of the following GARCH(1,1) model with split

normal errors:

yt = µ+
√

(κ−1ht)εt,

ht = ω(1− α− β) + αy2
t−1 + βht−1,

εt ∼ SN (δ, σ2
1, σ

2
2),

where δ = σ2−σ1√
2π

so that E(εt) = 0, and where κ = 1
2

(
(σ2

1 + σ2
2)− (σ2−σ1)2

π

)
is the

4On the other hand, if one would be interested in the median of the predictive distribution, then one
should obviously not focus on the tail during estimation.
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variance of εt
5. We set µ = 0, ω = 1, α = 0.1, β = 0.8, and for εt we again choose

σ1 = 1 and σ2 = 2. Then κ ≈ 2.34, which effectively implies the standard deviation of

the right and the left tail of around 0.65 and 1.3, respectively. In a single experiment

we simulate T = 1000 and T = 2500 observations from the DGP, and we carry out 50

MC repetitions of such an experiment.

To answer the question about the role of a “convenient” model specification, we es-

timate two (misspecified) models: the standard GARCH(1,1) model with normally

distributed innovations and the Asymmetric GARCH(1,1) model (AGARCH(1,1)) of

Engle and Ng (1993). The latter is characterised by two mean parameters: an ac-

tual mean µ1 and a parameter µ2 for defining the squared “demeaned” lagged return

(yt−1 − µ2)2 in the GARCH equation:

yt = µ1 +
√
htεt,

ht = ω(1− α− β) + α(yt−1 − µ2)2 + βht−1,

εt ∼ N (0, 1).

The GARCH(1,1) model results from the AGARCH(1,1) model by setting µ = µ1 =

µ2. In the PCP for the GARCH(1,1) model we choose the tail related parameters

θ2 = {µ, ω} and other (dynamics related) parameters θ1 = {α, β}, whereas for the

AGARCH(1,1) model we choose θ2 = {µ1, ω} and θ1 = {µ2, α, β}. Note that the

AGARCH(1,1) model may seem a “convenient” counterpart of the GARCH(1,1) model

for the PCP, as it separates the “direct” effect of µ on the conditional distribution of

yt (as the mean) and the effect of µ on the dynamics of the GARCH process in two

different parameters µ1 and µ2.

For both models we take flat priors over the standard domains to impose stationarity

and positivity of the volatility process, i.e. ω > 0, α ∈ (0, 1), β ∈ (0, 1), α+β < 1. We

analyse 99.5%, 99% and 95% one-step-ahead VaR and ES forecasting over a horizon

of 100 days and we carry out 50 independent MC replications. For the estimation we

consider, next to the regular posterior, two types of thresholds (for both the CP and

PCP): one time-constant threshold (at the 10% data percentile) and the time-varying

MLE-based threshold (at the 10% percentile of the estimated conditional distribution).

Tables 3.3.1 and 3.3.2 show the mean MSEs (i.e., the average of 50 MSEs for the

50 simulated datasets) for the 100 one-step-ahead VaR and ES predictions from the

GARCH(1,1) and AGARCH(1,1) models, respectively. We observe the following find-

5Differently than in the i.i.d. or AR(1) model examples, here we need to impose the unit variance
restriction on the innovations εt, so that the actual volatility of yt is determined by ht.
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ings. First, the PCP and CP outperform the regular posterior for the 99.5% and 99%

VaR and ES. On the other hand, the regular posterior outperforms the PCP and CP

for the 95% VaR and ES, where the 5% quantile is apparently not “deep enough” in

the tail to make the left-tail focus of censoring beneficial. Second, the PCP outper-

forms the CP for the small estimation window of T = 1000 observations (where it

is apparently crucial to limit the loss of information due to censoring), whereas the

performance of PCP and CP is similar for the large estimation window of T = 2500

observations. Notice that it obviously depends on the model whether an estimation

window is “small”, where a GARCH(1,1) model requires many more observations than

an AR(1) model for accurate estimation, and an AGARCH(1,1) model requires some-

what more observations than a GARCH(1,1) model. Third, typically the PCP (and

CP) with time-varying thresholds perform slightly better than their counterparts with

time-constant threshold. Fourth, the use of the PCP is equally or less beneficial in

the AGARCH(1,1) model than in the GARCH(1,1) model. Hence, we can say that

the PCP approach can perform well even when applied to standard models, so that no

specific models need to be used to make the PCP beneficial.

3.4 Empirical application

In this section we compare the left-tail forecasting performance for the regular posterior,

the censored posterior and the partially censored posterior using empirical data. We

consider daily logreturns of the IBM stock, from the 4th January 2007 to the 22nd

December 2016 (2512 observations, Figure 3.4.1).

Figure 3.4.1: Daily logreturns of the IBM stock from the 4th January 2007 to the 22nd December 2016. Black: the
in-sample period, gray: the out-of-sample period.

In our empirical study we analyse a benchmark model of volatility, commonly employed

by practitioners, the generalized autoregressive conditional heteroscedasticity model
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Risk measure Posterior CP (const. C) PCP (const. C) CP (var. Ct) PCP (var. Ct)

T = 1000
99.5% VaR 0.1556 0.1188 0.1061 0.1156 0.1040
99.5% ES 0.2385 0.1531 0.1431 0.1470 0.1385

99% VaR 0.1056 0.0953 0.0835 0.0930 0.0820
99% ES 0.1784 0.1259 0.1146 0.1219 0.1118

95% VaR 0.0225 0.0565 0.0491 0.0554 0.0467
95% ES 0.0645 0.0770 0.0674 0.0753 0.0655

T = 2500
99.5% VaR 0.1572 0.0696 0.0804 0.0712 0.0807
99.5% ES 0.2447 0.0831 0.1005 0.0840 0.1006

99% VaR 0.1056 0.0589 0.0669 0.0602 0.0659
99% ES 0.1815 0.0711 0.0843 0.0724 0.0841

95% VaR 0.0194 0.0411 0.0424 0.0417 0.0420
95% ES 0.0627 0.0495 0.0548 0.0508 0.0546

Table 3.3.1: Simulation results in estimated (misspecified) GARCH(1,1) model with normally distributed innovations
for data from DGP of GARCH(1,1) model with split normally distributed innovations (with σ1 = 1 and σ2 = 2). The
table reports the averages of MSEs (over 50 MC replications) for one-step-ahead VaR and ES prediction over an out-
of-sample window of H = 100 for standard posterior, censored posterior (CP) and partially censored posterior (PCP)
– the latter two with time-constant threshold (const. C) and time-varying threshold (var. Ct), at the 10% percentile
of the empirical distribution and the 10% percentile of the MLE-implied conditional distribution, respectively. Bold
numbers indicate the lowest average MSE.

Risk measure Posterior CP (const. C) PCP (const. C) CP (var. Ct) PCP (var. Ct)

T = 1000
99.5% VaR 0.1369 0.1374 0.1238 0.1372 0.1201
99.5% ES 0.2110 0.1802 0.1738 0.1793 0.1654

99% VaR 0.0924 0.1079 0.0952 0.1078 0.0923
99% ES 0.1572 0.1465 0.1361 0.1458 0.1305

95% VaR 0.0188 0.0593 0.0546 0.0583 0.0505
95% ES 0.0551 0.0857 0.0765 0.0853 0.0732

T = 2500
99.5% VaR 0.1627 0.0772 0.0901 0.0764 0.0893
99.5% ES 0.2509 0.0944 0.1160 0.0937 0.1140

99% VaR 0.1101 0.0627 0.0731 0.0632 0.0728
99% ES 0.1871 0.0791 0.0957 0.0788 0.0944

95% VaR 0.0212 0.0377 0.0437 0.0388 0.0434
95% ES 0.0660 0.0503 0.0592 0.0512 0.0591

Table 3.3.2: Simulation results in estimated (misspecified) AGARCH(1,1) model with normally distributed innovations
for data from DGP of GARCH(1,1) model with split normally distributed innovations (with σ1 = 1 and σ2 = 2). The
table reports the averages of MSEs (over 50 MC replications) for one-step-ahead VaR and ES prediction over an out-
of-sample window of H = 100 for standard posterior, censored posterior (CP) and partially censored posterior (PCP)
– the latter two with time-constant threshold (const. C) and time-varying threshold (var. Ct), at the 10% percentile
of the empirical distribution and the 10% percentile of the MLE-implied conditional distribution, respectively. Bold
numbers indicate the lowest average MSE.
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(GARCH, Engle, 1982; Bollerslev, 1986) with Student’s t innovations. We adopt the

following specification

yt = µ+
√
htεt,

εt ∼ t(0, 1, ν),

ht = ω(1− α− β) + α(yt−1 − µ)2 + βht−1

and we put flat priors and impose the standard variance positivity and stationarity

restrictions (i.e. ω > 0, α ∈ (0, 1), β ∈ (0, 1) with α+ β < 1), except for the degrees of

freedom, where we use an uninformative yet proper exponential prior (with prior mean

100) for ν − 2.

As a benchmark and the starting point for the PCP approach, we first carry out

the standard posterior analysis; second, we perform the estimation based on the CP.

Each time we run M = 10000 iterations (after a burn-in of 1000) of the IC-MH using

as a candidate the mixture of Student’s t distributions obtained with the MitISEM

algorithm of Hoogerheide et al. (2012) For the PCP, given the posterior draws of θ1 =

{α, β} of the dynamics parameters, we conditionally sample θ2 = {ν, µ, ω} from the

conditional censored posterior. For both the CP and PCP we consider two thresholds,

a time-constant threshold at the 10% quantile of the in-sample data and a time-varying

threshold, the 10% quantile of the MLE-implied conditional distribution.

Table 3.4.1 reports the estimation results and Figure 3.4.2 presents the correspond-

ing kernel density estimates. For the CP leaving α and β to be estimated based on

effectively few observations leads to much higher variances. Interestingly, for ν the

CP and PCP lead to very different estimation results than the regular posterior. The

latter implies a very fat-tailed distribution with a low degrees of freedom parameter,

while both the CP and the PCP suggest an almost normal shape of the left tail of the

distribution of the innovations (which comes with a high value of ω, suggesting that

the left tail may be more like a normal distribution with a higher variance than like

a Student’s t distribution with a smaller variance). This huge discrepancy between

the results from the regular posterior and the (P)CP can be interpreted as evidence of

model misspecification.

In our forecasting study we consider H = 1500 out-of-sample density forecasts, where

we have an in-sample period of T = 1012 observations. As our primary interest is

accurate left-tail density prediction, we compare the density forecasts based on the

censored likelihood scoring rule (3.1.8) of Diks et al. (2011). A novelty of this chapter

is that we also allow the threshold for the assessment of the quality of the left-tail
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Parameter Posterior CP (const. C) PCP (const. C) CP (var. Ct) PCP (var. Ct)

ν 7.0943 45.6427 38.1495 43.2466 33.7796

(1.4748) (25.3582) (26.3139) (25.3678) (24.8307)

µ 0.0905 0.6684 0.6287 0.5821 0.4492

(0.0362) (0.2725) (0.3825) (0.2310) (0.3131)

ω 16.4548 260.5379 47.3642 288.6082 42.7302

(18.9873) (369.5474) (60.8834) (423.7474) (59.0946)

α 0.1260 0.1605 0.1264 0.1683 0.1264

(0.0271) (0.0515) (0.0273) (0.0562) (0.0273)

β 0.8652 0.8317 0.8650 0.8234 0.8650

(0.0280) (0.0530) (0.0281) (0.0572) (0.0281)

Table 3.4.1: Empirical application to daily IBM logreturns: estimation results (means and standard deviations) for
the GARCH(1,1)-t model estimated with the regular posterior, the censored posterior (CP) and the partially censored
posterior (PCP) – the latter two with time-constant threshold (const. C) and time-varying threshold (var. Ct), at
the 10% percentile of the empirical distribution and the 10% percentile of the MLE-implied conditional distribution,
respectively.

prediction to be time-varying, which we set to the 0.5%, 1% and 5% percentile of the

MLE-implied conditional distribution. We also consider a time-constant threshold for

evaluation, as in the previous literature, which we set at the 10% percentile of the

in-sample data.

Tables 3.4.2 and 3.4.3 present the results of the Diebold-Mariano test based on the

censored scoring rule with time-constant and time-varying threshold, respectively. A

positive number indicates that the corresponding row method provides better left-

tail density forecasts than the corresponding column method. The plots of the loss

differentials used in the Diebold-Mariano tests, provided in Figure 3.D.2 in Appendix

3.D, show that the PCP provides substantially better left-tail density predictions than

the CP and the regular posterior on multiple days, whereas it is never (or hardly ever)

substantially outperformed.

We can see that the censored likelihood scoring rule with time-constant threshold for

evaluation clearly prefers the PCP over the CP: for all the quantile levels considered the

PCP significantly outperforms the fully censored approach (at 1% significance level).

Moreover, the PCP performs significantly better for the extreme left tail than the

regular posterior (at 5% significance level). In this application full censoring is only

harmful compared to the regular posterior, which stresses the merit of the introduced

partial censoring.

Also the conclusions from the evaluations based on the time-varying threshold are

supportive for the PCP approach. For the extreme left tail the regular posterior is
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Figure 3.4.2: Empirical application to daily IBM logreturns: kernel density estimates for the regular posterior, censored
posterior (CP) and partially censored posterior (PCP) – the latter two with time-constant threshold (const. C) and
time-varying threshold (var. Ct), at the 10% percentile of the empirical distribution and the 10% percentile of the
MLE-implied conditional distribution, respectively.

significantly outperformed by PCP (at 5% significance level).

We can conclude that for more complex models, usually applied in empirical practice,

the role of partial censoring becomes crucial. With multiple parameters to be estimated

based on effectively few observations, it might be hard for the fully censored posterior

to provide accurate left-tail density forecasts, so that it may be more beneficial to use

the regular posterior. On the other hand, with an “appropriately” chosen subset of

parameters to apply censoring, we can achieve better left-tail density forecasts than

with the standard posterior.

3.5 Conclusions

We have proposed a novel approach to inference for a specific region of interest of

the predictive distribution. Our Partially Censored Posterior method falls outside the

framework of regular Bayesian statistics as we do not work with the regular likelihood

but with the censored likelihood based on the censored likelihood scoring rule of Diks

et al. (2011). This allows us to keep the merits of the regular Bayesian analysis, e.g.

taking into account parameter uncertainty, and at the same time to allow for robust
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Posterior CP (const. C) PCP (const. C) CP (var. Ct)

Threshold for censored likelihood scoring rule = 0.5% percentile

Posterior – – – –

CP (const. C) -2.5013∗∗ – – –

PCP (const. C) 2.0464∗∗ 2.5867∗∗∗ – –

CP (var. Ct) -2.9143∗∗∗ -2.0998∗∗ -2.5866∗∗∗ –

PCP (var. Ct) 2.0369∗∗ 2.6460∗∗∗ -1.8986∗ 2.6533∗∗∗

Threshold for censored likelihood scoring rule = 1% percentile

Posterior – – – –

CP (const. C) -3.8343∗∗∗ – – –

PCP (const. C) 1.3922 2.5763∗∗∗ – –

CP (var. Ct) -4.0150∗∗∗ -1.7450∗ -2.5415∗∗ –

PCP (var. Ct) 1.3609 2.7439∗∗∗ -1.3752 2.7008∗∗∗

Threshold for censored likelihood scoring rule = 5% percentile

Posterior – – – –

CP (const. C) -4.9013∗∗∗ – – –

PCP (const. C) -1.8209∗ 3.5258∗∗∗ – –

CP (var. Ct) -5.0946∗∗∗ 0.0735 -3.2159∗∗∗ –

PCP (var. Ct) -2.2713∗∗ 3.8532∗∗∗ -0.7073 3.5323∗∗∗

Table 3.4.2: Empirical application to daily IBM logreturns: Diebold-Mariano test statistics for pairwise method
comparison of forecasting performance in the left tail based on the censored likelihood scoring rule with time-constant
threshold for evaluation (i.e., for computing the censored likelihood scoring rule), for H = 1500 out-of-sample obser-
vations, between the regular posterior, censored posterior (CP) and partially censored posterior (PCP) – the latter
two with time-constant threshold (const. C) and time-varying threshold (var. Ct), at the 10% percentile of the empir-
ical distribution and the 10% percentile of the MLE-implied conditional distribution, respectively. ∗, ∗∗, ∗∗∗ indicate
significance at 10%, 5%, 1% level, respectively.
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Posterior CP (const. C) PCP (const. C) CP (var. Ct)

Threshold for censored likelihood scoring rule = 0.5% percentile

Posterior – – – –

CP (const. C) 0.9642 – – –

PCP (const. C) 2.1526∗∗ 2.2572∗∗ – –

CP (var. Ct) 0.9848 -0.2301 -2.1132∗∗ –

PCP (var. Ct) 2.3944∗∗ 2.4226∗∗ -0.3568 2.3016∗∗

Threshold for censored likelihood scoring rule = 1% percentile

Posterior – – – –

CP (const. C) -0.1137 – – –

PCP (const. C) 1.3287 2.8183∗∗∗ – –

CP (var. Ct) -0.0889 0.4013 -2.5591∗∗ –

PCP (var. Ct) 1.5510 3.2282∗∗∗ 0.3566 2.9846∗∗∗

Threshold for censored likelihood scoring rule = 5% percentile

Posterior – – – –

CP (const. C) 0.6637 – – –

PCP (const. C) 2.2503∗∗ 3.5778∗∗∗ – –

CP (var. Ct) 0.5552 -2.2570∗∗ -3.6174∗∗∗ –

PCP (var. Ct) 2.1086∗∗ 3.1398∗∗∗ -2.5594∗∗ 3.2996∗∗∗

Table 3.4.3: Empirical application to daily IBM logreturns: Diebold-Mariano test statistics for pairwise method
comparison of forecasting performance in the left tail based on the censored likelihood scoring rule with time-varying
threshold for evaluation (i.e., for computing the censored likelihood scoring rule), for H = 1500 out-of-sample obser-
vations, between the regular posterior, censored posterior (CP) and partially censored posterior (PCP) – the latter
two with time-constant threshold (const. C) and time-varying threshold (var. Ct), at the 10% percentile of the empir-
ical distribution and the 10% percentile of the MLE-implied conditional distribution, respectively. ∗, ∗∗, ∗∗∗ indicate
significance at 10%, 5%, 1% level, respectively.
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inference focused on the left tail in cases of potential model misspecification. The

latter is vital for risk management, where the shape of the left tail of the conditional

distribution is of crucial importance.

Partitioning of the parameter set into two subsets, one of which is likely to benefit

from censoring, increases the precision of the parameter estimates compared to the

fully censored posterior of Gatarek et al. (2014) and allows us to obtain better left-

tail density forecasts. Further, we have introduced two novel simulation methods,

the MCMC method of Conditional MitISEM and the importance sampling method

of PCP-QERMit. Finally, we have considered novel ways of time-varying censoring,

which allow us for an even better focus on the left tail of the distribution of the

standardized innovations. We have demonstrated the usefulness of our methods in

extensive simulation and empirical studies.

To further exploit the power of our quasi-Bayesian framework, in future research we

intend to employ the PCP in the context of forecast combination via Model Averaging

using partially censored predictive likelihoods. Also extensions of the classical approach

of Opschoor et al. (2016) based on so-called pooling are relevant in this regard. The

Bayesian approach of Aastveit et al. (2018a) can be used in this context. Another

interesting extension will be to investigate the impact of using the smoothly-censored

likelihood of Diks et al. (2011) in our PCP setting, to make the PCP approach even

more robust w.r.t. the choice of the threshold Ct. An important domain of application

of the proposed PCP methodology would be portfolio optimization and portfolio risk

management, where the evaluation of the probability of yt lying outside the region of

interest (P(yt ∈ ACt |y1:t−1,θ)) may require an efficient simulation method. Finally, an

interesting extension would be the analysis of credit risk and defaults.

Appendix 3.A Bayesian out-of-sample forecasting

Generally, the H-step-ahead predictive posterior distribution can be specified via the

decomposition

p(y∗1:H |y1:T ) = p(y∗1|y1:T )
H∏
h=2

p(y∗h|y∗1:h−1,y1:T ) (3.A.1)

=

∫
p(y∗1|y1:T ,θ)p(θ|y1:T )dθ

H∏
h=2

∫
p(y∗h|y∗1:h−1,y1:T ,θ)p(θ|y1:T )dθ,
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which is a forecast over all H out-of-sample periods where the posterior density is ob-

tained using only the in-sample data y1:T . A common approach in practice is, however,

to consider H one-step-ahead forecasts
∏H

h=1 p(y
∗
h|y1:(T+h−1)) over the out-of-sample

period with the new incoming data used to formulate one-step-predictions. The differ-

ence with respect to (3.A.1) is that the factors in the product on the right-hand-side

in (3.A.1) are replaced by p(y∗h|y1:(T+h−1)) to deliver

H∏
h=1

p(y∗h|y1:(T+h−1)) = p(y∗1|y1:T )
H∏
h=2

p(y∗h|y1:(T+h−1))

=

∫
p(y∗1|y1:T ,θ)p(θ|y1:T )dθ

H∏
h=2

∫
p(y∗h|y1:(T+h−1),θ)p(θ|y1:(T+h−1))dθ.

(3.A.2)

Such a procedure would in principle require to sequentially update the posterior p(θ|y1:(T+h))

for each incoming observation, which for large in-sample and out-of-sample periods

might be computationally prohibitive. Hence, the pragmatic solution commonly adopted

in practice is based on the approximation p(θ|y1:(T+h)) ≈ p(θ|y1:T ) which for T suffi-

ciently large should not be too crude. The resulting approximation to (3.A.2) is

H∏
h=1

p(y∗h|y1:(T+h−1)) ≈
∫
p(y∗1|y1:T ,θ)p(θ|y1:T )dθ

H∏
h=2

∫
p(y∗h|y∗1:h−1,y1:T ,θ)p(θ|y1:T )dθ.
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3.B. CONDITIONAL DENSITY OF (MIXTURE OF) MULTIVARIATE
STUDENT’S T DISTRIBUTIONS

Appendix 3.B Conditional density of (mixture of)

multivariate Student’s t distributions

Student’s t distribution Let x ∈ Rd follow the Student’s t distribution with mode

µ, scale matrix Σ and ν degrees of freedom, denoted t(x;µ,Σ, ν), where we assume

ν > 2 so that Var(x) = ν
ν−2

Σ. Then, the probability density function (pdf) of x is

given by (see Zellner, 1996; Roth, 2013)

p(x) =
Γ
(
ν+d

2

)
Γ
(
d
2

)
(πν)

d
2

|Σ|−
1
2

(
1 +

(x− µ)′Σ−1(x− µ)

ν

)− d+ν
2

.

Next, consider a partitioning of x into x = (x′1,x
′
2)′ with x1 and x2 of dimensions d1

and d2, respectively. The corresponding parameter partitionings are then

µ =

(
µ1

µ2

)
, Σ =

(
Σ11 Σ12

Σ21 Σ22

)
.

Then, the conditional density of x2 given x1 is also a Student’s t density, which is given

by

p(x2|x1) =
p(x1,x2)

p(x1)
= t(x2;µ2|1,Σ2|1, ν2|1),

with

µ2|1 = µ2 + Σ21Σ−1
11 (x1 − µ1),

Σ2|1 =
ν + (x1 − µ1)′Σ−1

11 (x1 − µ1)

ν + d1

(
Σ22 − Σ21Σ−1

11 Σ12

)
,

ν2|1 = ν + d1.

Mixture of Student’s t distributions The above result extends to mixtures of

Student’s t distributions. Now let x follow an H component mixture of Student’s t

distributions t(x;µh,Σh, νh), with component probabilities ηh, h = 1, . . . , H, so that

its pdf is given by

p(x) =
H∑
h=1

ηht(x;µh,Σh, νh).

Let z denote a (latent) H-dimensional vector indicating from which component the

observation x stems: if x stems from the hth component then z = eh, the hth vector of

the standard basis of RH , i.e. zh = 1 and zl = 0 for l 6= h. Obviously, unconditionally
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P(z = eh) = ηh. The conditional probability of x stemming from the hth component is

P[z = eh|x] =
p(z = eh,x)

p(x)

=
P[z = eh]p(x|z = eh)∑H

m=1 P[z = em]p(x|z = em)

=
ηht(x;µh,Σh, νh)∑H

m=1 ηmt(x;µm,Σm, νm)
.

Then, the conditional density of x2 given x1 is given by

p(x2|x1) =
p(x1,x2)

p(x1)
=

∑H
h=1 ηht(x;µh,Σh, νh)∑H

h=1 ηht(x1;µh,1,Σh,1, νh)
=

H∑
h=1

ηh,2|1t(x2;µh,2|1,Σh,2|1, νh,2|1),

with

µh,2|1 = µh,2 + Σh,21Σ−1
h,11(x1 − µh,1),

Σh,2|1 =
νh + (x1 − µh,1)′Σ−1

h,11(x1 − µh,1)

νh + d1

(
Σh,22 − Σh,21Σ−1

h,h,11Σh,12

)
,

νh,2|1 = νh + d1,

and with adjusted component probabilities

ηh,2|1 = P[z = eh|x] =
ηht(x1;µh,1,Σh,11, νh)∑H

m=1 ηmt(x1;µm,1,Σm,11, νm)
.

This implies that if we have obtained qmit(θ1,θ2), a mixture of Student’s t densities

that approximates the joint censored posterior pcp(θ1,θ2|y), then we can use the M

implied conditional mixtures of Student’s t densities qcmit(θ2|θ1 = θ
(i)
1 ) (i = 1, . . . ,M),

as candidate densities for pcp(θ2|θ(i)
1 ,y) (i = 1, . . . ,M). Hence, we only need one Mi-

tISEM approximation to obtain all the conditional candidate densities in our proposed

Conditional MitISEM method.
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Appendix 3.C Density estimates

3.C.1 I.i.d.
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(b) T = 1000

-0.2 -0.1 0 0.1 0.2

µ

0

10

20

30

40

0.85 0.9 0.95 1 1.05 1.1

σ

0

20

40

60

Uncensored CP 10% CP 0 True
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Figure 3.C.1: Estimation results in i.i.d. normal N(µ, σ2) model for T = 100, 1000, 10000 observations from DGP
of i.i.d. normal (σ = 1). Kernel density estimates of regular posterior and censored posterior (CP) with two different
thresholds, at 0 (CP0) and at the 10% data percentile (CP10%) together with the true parameter values (corresponding
to left tail).

93



CHAPTER 3. PARTIALLY CENSORED POSTERIOR

-2 0 2 4 6

µ

0

0.5

1

1.5

2

2.5

3

-2 0 2 4 6 8 10

σ

0

1

2

3

4

Uncensored CP 10% CP 0 True

(a) T = 100

-1 -0.5 0 0.5 1 1.5 2

µ

0

2

4

6

8

10

1 1.5 2 2.5 3

σ

0

2

4

6

8

10

12

Uncensored CP 10% CP 0 True

(b) T = 1000
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Figure 3.C.2: Estimation results in i.i.d. normal N(µ, σ2) model for T = 100, 1000, 10000 observations from DGP of
i.i.d. split normal (σ1 = 1, σ2 = 2). Kernel density estimates of regular posterior and censored posterior (CP) with
two different thresholds, at 0 (CP0) and at the 10% data percentile (CP10%) together with the true parameter values
(corresponding to left tail).
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3.C.2 AR(1)

-2 -1 0 1 2

µ

0

1

2

3

4

0 1 2 3

σ

0

2

4

6

0 0.5 1

ρ

0

2

4

6

Uncensored CP 10% CP 0 PCP 10% PCP 0 True

(a) T = 100
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(b) T = 1, 000
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(c) T = 10, 000

Figure 3.C.3: Symmetric (correctly specified) AR(1) mean zero split normal model with σ1 = 1 and σ2 = 1: kernel
density estimates for the regular posterior, censored posterior (CP) and partially censored posterior (PCP) with different
thresholds, at 0 (CP0, PCP0) and at the 10% data percentile (CP10%, PCP 10%) together with the true values for the
left tail.
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(b) T = 1, 000
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(c) T = 10, 000

Figure 3.C.4: Asymmetric (misspecified) AR(1) mean zero split normal model with σ1 = 1 and σ2 = 2: kernel density
estimates for the regular posterior, censored posterior (CP) and partially censored posterior (PCP) with different
thresholds, at 0 (CP0, PCP0) and at the 10% data percentile (CP10%, PCP 10%) together with the true values for the
left tail.
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3.C.3 GARCH(1,1)
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(a) T = 1, 000
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(b) T = 2, 500

Figure 3.C.5: GARCH(1,1) mean zero split normal model with σ1 = 1 and σ2 = 2: kernel density estimates for the
regular posterior, censored posterior (CP) and partially censored posterior (PCP) with different thresholds, at 0 (CP0,
PCP0) and at the 10% data percentile (CP10%, PCP 10%).
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3.C.4 AGARCH(1,1)

-0.5 0 0.5 1 1.5

µ1

0

5

10

15

-1 0 1 2

µ2

0

0.5

1

1.5

2

2.5

0 5 10 15 20

ω

0

1

2

3

4

0 0.5 1

α

0

5

10

15

0 0.5 1

β

0

2

4

6

8

Uncensored

CP

CPvar

PCP

PCPvar

(a) T = 1, 000

0 0.2 0.4 0.6 0.8

µ1

0

5

10

15

20

25

0 2 4 6

ω

0

2

4

6

8

-1 0 1 2

µ2

0

1

2

3

4

5

0 0.5 1

α

0

5

10

15

20

0 0.5 1

β

0

2

4

6

8

Uncensored

CP

CPvar

PCP

PCPvar
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Figure 3.C.6: AGARCH(1,1) mean zero split normal model with σ1 = 1 and σ2 = 2: kernel density estimates for the
regular posterior, censored posterior (CP) and partially censored posterior (PCP) with different thresholds, at 0 (CP0,
PCP0) and at the 10% data percentile (CP10%, PCP 10%).
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Appendix 3.D Loss differential plots
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Figure 3.D.1: Empirical application to daily IBM logreturns: loss differentials based on the censored likelihood scoring
rule with time-constant evaluation threshold (computed as the percentile of the empirical distribution). Negative values
of the loss differential indicate that the Partially Censored Posterior (PCP) performs better than the alternative.
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(c) Threshold for censored likelihood scoring rule = 0.5% percentile.

Figure 3.D.2: Empirical application to daily IBM logreturns: loss differentials based on the censored likelihood scoring
rule with time-varying evaluation threshold (computed as the percentile of the estimated conditional distribution based
on the ML estimator). Negative values of the loss differential indicate that the Partially Censored Posterior (PCP)
performs better than the alternative.
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Chapter 4

Semi-Complete Data Augmentation

for Efficient State Space Model

Fitting

The task of inference about a latent state governing the dynamics of the system un-

der study given only the observed noisy data is ubiquitous in many contexts, e.g. in

applied statistics, ecology, engineering or economics. A very intuitive way of describ-

ing such problems is provided by latent process models, also known as state space

models (SSM), see Durbin and Koopman (2012) and West and Harrison (1997) for

the Bayesian perspective. Such models are frequently used due to the combination of

their natural separation of the different mechanisms acting on the system of interest:

the (unobserved) underlying system process; and the observation process. Considering

each distinct process separately simplifies the model specification process, and pro-

vides a very flexible modelling approach. This flexibility, however, typically comes at

the price of substantially more complicated fitting of such models to data. For the gen-

eral non-linear non-Gaussian SSM the associated likelihood is analytically intractable

so that no closed-form solution is available to the optimal estimation problem. Only in

certain circumstances the associated likelihood can be calculated explicitly: for linear

Gaussian systems the Kalman filter provides the optimal state estimator; for hidden

Markov models specified on a discrete state space the likelihood may be available in a

closed-form (but may become infeasible for a large number of states). In this chapter

we focus on models for which the likelihood is analytically intractable or for which it

may be infeasible to compute explicitly.

Dominant approaches to intractable likelihood problems include: (i) numerical or
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Monte Carlo integration to estimate the observed (or marginal) data likelihood; and

(ii) data augmentation (DA), based on the complete (or joint) data likelihood of the

observed and the imputed unobserved states, see Tanner and Wong (1987). The former

group includes the sequential Monte Carlo (SMC) methods, see Doucet et al. (2001)

for an extensive review, which can be used for parameter estimation within a standard

Markov chain Monte Carlo (MCMC) algorithm (i.e. particle MCMC, see Andrieu

et al., 2010). Provided the corresponding likelihood estimator is unbiased, the conver-

gence to the correct posterior is guaranteed by the pseudo marginal theory (Beaumont,

2003; Andrieu and Roberts, 2009). In general, numerical integration provides a lim-

ited solution, feasible only for very low dimensional systems. The latter DA approach

has become a standard method for inference for SSMs within a Bayesian framework,

see Frühwirth-Schnatter (1994, 2004); Hobert (2011). DA relies on the true unknown

states being treated as auxiliary variables and imputed within the MCMC algorithm.

However, the general Bayesian DA approach implemented using standard “vanilla”

MCMC algorithms may perform very poorly due to high correlation between the im-

puted states and/or parameters, see Hobert et al. (2011) and the references therein.

This leads to the need for specialist, model-specific algorithms and related bespoke

codes.

We propose a novel efficient model-fitting algorithm to circumvent these inefficiencies

by combining DA with numerical integration in a Bayesian hybrid approach, where the

associated standard “vanilla” algorithms perform substantially more efficiently. The

underlying idea is to combine the “good” aspects of both methods by minimising the

problems that arise for each, i.e. highly correlated latent states for DA and the curse

of dimensionality for numerical integration. To this end, we utilise the structure of

the unknown states which can be split into two types: auxiliary variables, which are

imputed within the MCMC algorithm using DA; and “integrable” states, which are

numerically integrated out within the likelihood expression. We specify the unknown

states in such a way that the algorithm is efficient where the imputed states have

limited/reduced correlation and the numerical integration is over a very low number

of dimensions.

The structure of the chapter is a follows. Section 4.1 presents the general SSM specifica-

tion and discusses the previous approaches to fit these general models to data. Section

4.2 introduces the proposed Semi-Complete Data Augmentation approach while Sec-

tion 4.3 develops a general HMM-based approximation to the associated likelihood. We

demonstrate the efficiency gains from the new method in Section 4.4, where we discuss

two empirical applications relating to the abundance estimation for the ecological data,
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and to the estimation of the stochastic volatility (SV) for financial data. Section 4.5

concludes with a discussion.

4.1 State space models

Consider a state space model of the form:

yt|xt,θ ∼ p(yt|xt,θ), (4.1.1)

xt+1|xt,θ ∼ p(xt+1|xt,θ), (4.1.2)

x0|θ ∼ p(θ), (4.1.3)

for t = 1, . . . , T , with y = (y1, . . . ,yT ). Here yt ∈ Y denotes a time series of ob-

servations (potentially multivariate, although in our examples they are univariate),

x = (x1, . . . ,xT ) a series of latent states (with xt = [x1,t, . . . , xD,t]
T potentially mul-

tivariate, xd,t ∈ Xd) and θ the model parameters for which we put a prior p(θ). T

denotes the length of the time series and D < ∞ the dimension of the state xt. To

simplify notation, below we use p as a general symbol for a probability mass function

(pmf) or a probability density function (pdf), possibly conditional.

The system process describing the evolution of xt, the true (unobserved) state of the

system over time is defined by the distribution (4.1.2). The observation process which

generates yt, the observed data given the true underlying states, is specified by the

distribution (4.1.1). This separation of the different mechanisms acting on the system

of interest makes SSM a very intuitive and flexible description of time series data.

Figure 4.1.1 graphically presents the dependencies between states and observations in

the SSM. An extensive discussion of SSMs is provided by Durbin and Koopman (2012)

and also Cappé et al. (2006), where this class of models is called hidden Markov models

(HMM)1

Modelling flexibility of SSMs is, however, often offset with the issue of estimating θ,

the associated model parameters. The observed data likelihood for the system (4.1.1)–

(4.1.3) is given by

p(y|θ) =

∫
p(y,x|θ)dx =

∫
p(x0|θ)

T∏
t=1

p(yt|xt,θ)p(xt|xt−1,θ)dx0dx1 . . . dxT , (4.1.4)

1The terminology is not fully consistent in this context: the term “HMM” is sometimes used only for
SSMs with a finite state space, i.e. dim(Xd) < ∞. This convention is used by e.g. Zucchini et al.
(2016).
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Figure 4.1.1: A graphical representation of the general first-order SSM.

and typically is not available in closed form. This is due to the integration over the

latent variables, which is difficult to calculate, despite the tractability of the joint

distribution of the data and the auxiliary variables p(y,x,θ). The latter is often

referred to as the complete data likelihood.

For models with discrete states the observed data likelihood is the likelihood of an

HMM, where the states of the chain correspond to distinct values of the latent process,

and the transition matrix can be derived from the transition equation (4.1.2). This

likelihood can be efficiently calculated using the forward algorithm (see Zucchini et al.,

2016). However, for systems with multiple processes there may be a very large number

of possible states. This can lead to the approach being infeasible due to the curse

of dimensionality. In addition, such an approach becomes infeasible even for simple

systems, with e.g. only 2 processes, but with many potential state outcomes (i.e. when

dim(Xd) is “large”).

To overcome the problem of the intractable likelihood, the standard DA technique is

commonly adopted, see Tanner and Wong (1987); Frühwirth-Schnatter (1994, 2004);

Hobert (2011). In DA the unknown states x are treated as auxiliary variables and

imputed2. This way one can work with the closed-from complete data likelihood

p(y,x|θ) = p(x0|θ)
T∏
t=1

p(yt|xt,θ)p(xt|xt−1,θ).

In the Bayesian framework, the complete data likelihood is used to construct the joint

posterior distribution of θ and x

p(θ,x|y) ∝ p(x,y|θ)p(θ) = p(y|x,θ)p(x|θ)p(θ).

Then an MCMC algorithm (or other) can be employed to draw from the joint posterior

2A similar idea underlies the expectation-maximisation algorithm of Dempster et al. (1977) in the
classical framework.
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distribution and the generated values of θ are taken as a sample from the (marginal)

posterior distribution of interest p(θ|y). In practice the random walk Metropolis-

Hastings (RW-MH) algorithm is often used and it acts as a “vanilla” MCMC algorithm

(see Marin and Robert, 2007, Ch. 4).

DA is a powerful tool for dealing with intractable likelihoods, however it often results

in posterior draws being highly correlated, indicating poor mixing and hence low ef-

ficiency of MCMC algorithms. This is particularly the case for SSMs models which

impose a strong dependence structure on the latent variables and parameters. Single-

update algorithms can perform especially poorly, nevertheless they are often used as

they are easy to implement. An alternative approach based on block sampling, i.e.

simultaneously updating the target distribution in multiple dimensions, can lead to

an improved mixing. However, it requires defining an appropriate partition of the

states and parameters into blocks and specifying an efficient proposal distributions for

each block. These problems of the standard DA approach often result in specialist

algorithms being developed for the purpose of efficient estimation of a given model.

Consequently, bespoke codes need to be written dependent on model and data.

4.2 Semi-Complete Data Augmentation

To improve the efficiency of the standard DA approach, we propose to combine DA

with numerical integration within a Bayesian hybrid framework, which we call Semi-

Complete Data Augmentation. A key idea is to separate the latent state x into two

components x = (xaug,xint). We will refer to xint and xaug as the “integrated” states

and the “augmented” states, respectively. The starting point for our method is to

specify the semi-complete data likelihood (SCDL) p(y,xaug|θ) as follows:

p(y,xaug|θ) =

∫
p(y,xaug,xint|θ)dxint

=

∫
p(y|xaug,xint,θ)p(xaug,xint|θ)dxint. (4.2.1)

The joint posterior distribution of the parameters and augmented states can be then

expressed as

p(θ,xaug|y) ∝ p(y,xaug|θ)p(θ)

= p(y|xaug,θ)p(xaug|θ)p(θ).

105



CHAPTER 4. SEMI-COMPLETE DATA AUGMENTATION

We note that our approach builds upon the work of King et al. (2016), who propose

a Bayesian hybrid approach applied to the particular case of capture-recapture data.

These authors define the “semi-complete” data likelihood as the product of a complete

data likelihood component for the individuals observed within the study (related to

xaug) and a marginal data likelihood component for the unobserved individuals (related

to xint). We extend their approach to the general state space models framework and

consider different schemes for specifying the semi-complete data likelihood in terms of

defining xaug and xint.

Specification of the auxiliary variables More precisely, consider a time series

x = {xt}Tt=0 of length T + 1, where the state at time t is D dimensional: xt =[
x1,t, . . . , xD,t

]T
, for t = 0, 1, . . . , T . We want to integrate out Dint dimensions of

the state at time points Tint, where Dint ⊂ {1, . . . , D} are Tint ⊂ {0, 1, . . . , T} are

“suitably” chosen subsets of dimension and time indices, respectively. Such a “suit-

able” specification of subsets Dint and Tint depends on the dependence structure of the

model under consideration so that the implied integral can be efficiently calculated. For

instance, it can be low dimensional or it can be reduced to a product of low-dimensional

integrals. The compliments of both subsets are denoted Daug and Taug, respectively.

We also denote T+
int and T+

aug the corresponding sets without the initial observations,

i.e. excluding time t = 0. The “integrated” and “augmented” states are then de-

fined by the partition of x into xint = {xd,t}d∈Dint,t∈Tint and xaug = {xd,t}d∈Daug ,t∈Taug ,
where we denote their corresponding elements at time t by xint,t = {xd,t}d∈Dint and

xaug,t = {xaug,t}d∈Dint , respectively. In particular, we give the following two examples

of integration/augmentation schemes.

(a) “Horizontal” integration: e.g. for a D = 2 dimensional state we integrate out

the second state at all time periods, so that Dint = {2} (and hence Daug = {1}),
and Tint = {0, 1, . . . , T} (and hence Taug = Tint), see Figure 4.2.1a. We use this

scheme in the lapwings data application in Section 4.4.1.

(b) “Vertical” integration: e.g. all D states are integrated out at odd time periods

Dint = {1, . . . , D} and Tint = {2t+ 1}bT/2ct=0 (and hence Taug = {2t}bT/2ct=0 ), see Fig-

ure 4.2.1b. We use this scheme in the stochastic volatility (SV) model application

in Section 4.4.2, for D = 1 dimensional state.

As we can see, in general Tint and Taug do not need to be equal and their elements

may not be consecutive numbers. However, we would like to iterate over both sets
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x1,t−1 x1,t x1,t+1

x2,t−1 x2,t x2,t+1

(a) Horizontal integration.

x1,t−1 x1,t x1,t+1

x2,t−1 x2,t x2,t+1

(b) Vertical integration

Figure 4.2.1: Two examples of an integration/augmentation scheme. Diamonds represent the imputed states, circles
– the integrated states. Dashed lines used for the relations from the imputed (known) states.

using the same index. Therefore, we introduce two functions τ(t) and a(t) such that

the image of τ is T+
int and the image of a covers T+

aug, both defined on 1, 2, . . . , |T+
int|.

We require τ to be bijective and allow a to take values in the power set of T+
aug. The

latter characteristic means that a(t) can take two or more values in T+
aug but also no

value (i.e. a(t) = ∅) and is required as we may associate multiple imputed stated

with a single marginalised state3. For instance, we may modify the vertical integration

scheme given in (b) so that states at two consecutive time points 3t + 1, 3t + 2 are

imputed with the states at the preceding time point 3t being integrated out. With

the introduced index functions the subsequent integrated and augmented states are

given by . . . ,xint,τ(t−1),xint,τ(t),xint,τ(t+1), . . . and . . . ,xaug,a(t−1),xaug,a(t),xaug,a(t+1), . . . ,

respectively, for t = 1, 2, . . . , |T+
int|. In the two examples above we have τ(t) = t and

a(t) = t for the horizontal integration given in (a) and τ(t) = 2t+ 1 and a(t) = 2t for

the vertical integration in (b).

Additionally, we specify a function for observations o(t) with a similar role to τ and a,

i.e. allowing us to iterate over the set of observation indices {1, . . . , T} using the same

index as to iterate over Tint and Taug. Therefore, we want the image of o(t) to cover

{1, . . . , T}, the whole set of indices of yt, which may consist of elements from both Tint

and Taug. This means that we need to be able to assign multiple indices from {1, . . . , T}
to the iterating variable t. To this end, we allow o(t) to take values in the power set of

Tint∪Taug. For illustration, consider vertical integration (b) together with conditionally

independent observations yt|xt ∼ p(yt|xt). For t = 1, 2, . . . , |T+
int| we consider states in

two different time periods, i.e. at period τ(t) = 2t+ 1 for the integrated states and at

period a(t) = 2t for the imputed states, so that for each t we need to account for two

different observations, yτ(t) and ya(t). This means that o(t) = {2t, 2t + 1}. In the case

of horizontal integration (a) Tint = Taug so we simply set o(t) = t.

3Below we discuss how the marginalised states can be related to states of a first order hidden Markov
model.
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In order to identify conditionally independent latent states to “integrate out”, one can

use the graphical structure of the problem: Figure 4.1.1 can be seen as an directed

acyclic graph (DAG), for which the literature on Dynamic Bayesian Networks (see

Murphy, 2002) provides insights regarding the impact of conditioning on a certain

node (d-separation). In the context of particle filters Doucet et al. (2000a) note that

the “tractable structure” of some state space models might by analytically marginalised

out given imputed other nodes.

Rao-Blackwellisation We note that integrating out, or “marginalising out”, some

of the variables is a case of the general technique known as Rao-Blackwellisation, which

relies on the Rao-Blackwell formula. Suppose that we are interested in a function f of

two random vectors z1 and z2, and let f̂ be an estimator of f . Then

Var[f̂(z1, z2)] = Var[E[f̂(z1, z2)|z2]︸ ︷︷ ︸
=:f̂ ′

] + E[Var[f̂(z1, z2)|z2]]︸ ︷︷ ︸
(∗)

,

which implies that f̂ ′ has the same expected value as f̂ but a lower variance than

f̂ by an additive factor of (∗). Rao-Blackwellisation was introduced to the MCMC

literature by Gelfand and Smith (1990) in their seminal paper on the Gibbs sampler

to become a commonly applied tool for variance reduction of integral approximations.

In general context of sampling schemes, Rao-Blackwellisation was further analysed by

Casella and Robert (1996), whose approach was then used by Douc and Robert (2011)

for improving efficiency of the MH algorithm and by Doucet et al. (2000b,a) to enhance

particle filters. Durbin and Koopman (2012, Ch. 12) note that in the context of state

space models z2, i.e. the variable being integrated out, is not a sufficient statistic, hence

the term “Rao-Blackwellisation” is not fully appropriate since the the Rao-Blackwell

theorem concerns the case when z2 is a sufficient statistic for z1. The contribution of

this paper is to employ the Rao-Blackwell principle for DA in the context of state space

models.

Approximate marginal likelihood Recall that the joint posterior distribution over

θ and xaug can be expressed in terms of the SCDL

p(θ,xaug|y) ∝ p(y,xaug|θ)p(θ).

However, the SCDL p(y,xaug|θ) may still be analytically intractable so that we need

to estimate it using simulation-based techniques. Suppose we have a sample of length
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N of unknown variables of interest (i.e. θ and xaug). Here, N is a number of points

used for integration: for a deterministic integration it it the number of grid points,

for a stochastic, i.e. Monte Carlo (MC), integration it is a number of draws. We can

use such a sample to compute p̂N(y,xaug|θ), the N -sample estimate of the SCDL, and

consequently to approximate the posterior distribution in the following way

p̂N(θ,xaug|y) ∝ p̂N(y,xaug|θ)p(θ).

We set p̂N(y,xaug|θ) such that

p̂N(y,xaug|θ)
N→∞→ p(y,xaug|θ),

so that

p̂N(θ,xaug|y)
N→∞→ p(θ,xaug|y).

Further properties of the resulting likelihood estimator depend in general on the approx-

imation scheme, which in turn determine the properties of the corresponding MCMC

algorithm. If E[p̂N(y,xaug|θ)] = p(y,xaug|θ) standard MH algorithms converge to

p(θ,xaug|y), which follows from the pseudo-marginal argument. The pseudo-marginal

theory, originated by Beaumont (2003), further developed by Andrieu and Roberts

(2009) and popularised by Andrieu et al. (2010) (who called their method the par-

ticle MCMC, PMCMC), guarantees that an MCMC scheme based on the unbiased

(marginal) likelihood estimator converges to the exact posterior distribution4. Such an

unbiased likelihood estimator is delivered by e.g. MC integration, in which the inte-

gral is evaluated at random points. Hence, whether the resulting MCMC algorithm

is “exact approximate” or “just approximate” depends on whether the approximate

likelihood is an unbiased estimator of the marginal likelihood.

For fixed points, such as in a quadrature, obtaining of an “exact approximate” algo-

rithm is not guaranteed but the resulting approximation converges to the true value

as N → ∞. It means that a “just approximate” algorithm can be made arbitrarily

close to the true integral by considering sufficiently many samples to construct the

estimator. Additionally, we note that unbiased estimators might be characterised by

large MC errors, particularly for a small number of samples, see e.g. Korattikara et al.

(2014), Jacob and Thiery (2015). The choice between different likelihood approxima-

tion methods fits into the traditional discussion on the bias-variance trade-off. However,

as pointed out by Robert (2016), especially from a Bayesian perspective unbiasedness

4PMCMC algorithms are thus called “exact approximate”. Note that they are the extreme case of
our approach with xint = x.
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is a “second order property”5.

4.3 Approximations for MCMC sampling

Below we consider possible ways for obtaining an estimate p̂N(y,xaug|θ). In particular,

we focus on the case when it can be obtained as a product of one dimensional inte-

grals. This assumption is less restrictive than it may appear at first: the choice of the

auxiliary variables can often be made such that this condition is satisfied. There exist

several methods to numerically estimate a single one dimensional integral including:

(1) quadrature with fixed nodes; (2) quadrature with adaptive nodes; (3) stochastic

(MC) integration. The two former approaches can be seen as “binning” of similar val-

ues of the integrated state vector within specified ranges (“bins”), which can then be

interpreted as states of a (finite-dimensional) first-order HMM. In the context of bins

of equal widths such an approach has been successfully applied e.g. by Langrock et al.

(2012a,b); Langrock and King (2013). For the latter MC approach the resulting estima-

tor of the complete data likelihood is unbiased E(p̂N(y,xaug|θ)) = p(y,xaug|θ). Hence,

the pseudo-marginal argument guarantees that the chain generated with a standard

MH algorithm (using the estimate p̂N(y,xaug|θ)) converging to the exact posterior dis-

tribution p(θ,xaug|y) in this case; see Beaumont (2003), Andrieu and Roberts (2009)

and Andrieu et al. (2010).

We note that in low dimensions all of these methods are feasible, however we focus on

methods based on the two former approaches as they provide an intuitive interpreta-

tion in terms of state transition probabilities and conditional (augmented) observation

distributions. There are two cases when such an approximation might be particularly

useful. First, when the state vector is discrete but of a large size grouping of its ele-

ments into “bins” helps to reduce the size of the problem. Second, for continuous states

any form of numerical integration basically reduces to splitting of the state space into

“bins”, which can then be further combined into larger groups to increase the efficiency

of an algorithm.

5There are two obvious reasons for that. First, the concept of a bias is conditional on the true value
of a parameter, which is unknown (Gelman, 2011). Second, unbiasedness cannot be achieved for
most transformations of the model parameter vector and is not preserved under reparameterisation
(Robert, 2016).
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4.3.1 Approximation bins as hidden Markov model states

Below we discuss ways to specify the bins, or quadrature points: a deterministic one,

with bins of a fixed size (but varying probability of occurring), and a stochastic one,

with bins of a fixed probability (but varying size). To simplify the exposition, we

assume that xint,τ(t) is univariate so we can write xint,τ(t). For multivariate xint,τ(t) we

may consider separate bins for each integrated state dimension d ∈ Dint at time τ(t).

We then interpret the bins as states of a latent (first-order) Markov process, which

allows us to give the resulting integration/augmentation scheme an HMM embedding6.

Fixed bins A straightforward approach to binning is via bins of a fixed size as it

relates to a deterministic approximation of the likelihood with a quadrature and allows

for a natural HMM interpretation. Discretising of the state space to perform numerical

integration dates back to Kitagawa (1987) and was discussed in Zucchini et al. (2016).

The associated approximate posterior distribution can be made arbitrarily accurate by

increasing the number of bins (quadrature points).

The idea is to split the state space Xint of the state to be integrated out into B bins

of length k (for integer-valued variables we assume k ∈ N) and to consider e.g. the

midpoints of the bins for integration. Then the values that fall in a given bin are

approximated by the value of the midpoint of that bin. Such an approach is used by

Langrock et al. (2012b) to efficiently approximate the likelihood for stochastic volatility

models (with continuous bins) in a classical framework.

For infinitely dimensional states, either discrete or continuous, an “allowed integration

range” needs to be specified. For instance, for a normal variable this means setting a

lower and an upper bound for the integration b0 and bB, while for a Poisson variable

only of an upper bound bB since b0 = 0 in this case. We divide the resulting domain

into intervals as follows:

[b0, . . . , b1)︸ ︷︷ ︸
B1, bin 1

, [b1, . . . , b2)︸ ︷︷ ︸
B2, bin 2

, . . . , [bj−1, . . . , bj)︸ ︷︷ ︸
Bj , bin j

, . . . , [bB−1, · · · , bB)︸ ︷︷ ︸
BB , bin B

,

bi − bi−1 = k, i = 1, . . . , B.

For continuous variables Bi is simply a continuous interval of length k, while for discrete

6We note that from the perspective of the original process {x} the process we want to integrate out
{xint} will not be a Markov chain due to its potential dependence on the imputed states {xaug}.
However, since we know the latter, conditioning on them can be understood as adopting a time-
varying transition probabilities for {xint}, parametrised with relevant {xaug}.
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variables it consists of k subsequent integers, e.g. for a Poisson variable we have

Bi = {ik, . . . , (i + 1)k} . We specify the midpoints of the bins as b∗i = bi−1+bi
2

(for

integer-valued variables rounding is required for even k).

We then define {zt}, t ∈ 1, . . . , T ∗, as a B-state, discrete-time (not necessarily homo-

geneous) Markov chain7 with transition probabilities γjk,t = P(zt = k|zt−1 = j) defined

as

γjk,t := P(xint,τ(t) ∈ Bk|xint,τ(t−1) ∈ Bj,xaug,a(t−1)).

Then a transition of zt−1 = j to zt = k is equivalent to xint,τ(t) “falling into” bin k

given xint,τ(t−1) was in bin j and given xaug. For computationally intensive probabilities

we can further approximate these as γ̃∗jk,t := p(b∗k|b∗j ,xaug,a(t−1)), which for discrete

variables means P(xint,τ(t) = b∗k|xint,τ(t−1) = b∗j ,xaug,a(t−1)). To get the valid probability

values (i.e. summing up to one) we normalise the transition probabilities as γ∗jk,t :=

γ̃∗jk,t/
∑B

c=1 γ̃
∗
jc,t. Notice that this corresponds to treating the values in a bin uniformly.

We can alternatively compute the transition probabilities between bins directly, by

integrating with respect to the required ranges as follows

P(xint,τ(t) ∈ Bk|xint,τ(t−1) ∈ Bj,xaug,a(t−1)) ∝∫
Bk

∫
Bj
p(xint,τ(t)|xint,τ(t−1),xaug,a(t−1))dxint,τ(t−1)dxint,τ(t).

However, typically such an analytical integration will only be possible in simple cases,

e.g. discrete variables. One can visualise this method by considering small squares of

a bigger transition matrix instead of each of its element separately.

Adaptive bins An alternative approach to fixed width binning is to use adaptive

intervals which do not require any limiting of the integration range. This can be done

by transforming the variable of interest to the [0, 1] range by applying a cdf. Then

the bins can be specified on the [0, 1] interval and their limits or midpoints can be

transformed back to obtain the values needed for the approximation of the original

variable of interest. In particular, quantiles of the distribution associated with the

variable of interest can be used. Then instead of specifying the grid points we fix the

probabilities for each bin, which previously needed to be determined. This means a

7Even though we hardly refer to {zt} explicitly later in the text, they are useful to understand the
introduced construction relating the potentially continuously valued process of interest xint,τ(t) to a
finite state HMM zt. Such an exposition is inspired by Langrock et al. (2012b, Section 2.2).
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quantile determination problem which are needed e.g. to obtain the midpoint values

used in conditioning.

Suppose that xint,τ(t) ∼ p(ϑτ(t)), τ(t) ∈ Tint, where ϑτ(t) is a vector of possibly time

varying parameters, with the corresponding cdf F (ϑτ(t)). Consider a vector of B +

1 quantiles q = [q0, q2, . . . , qB]. The corresponding B mid-quantiles, denoted q∗ =

[q∗1, q
∗
2, . . . , q

∗
B], are given by q∗i = qi−1+qi

2
(for instance, q = [0.0, 0.1, 0.2, . . . , 1.0] and

q∗ = [0.05, 0.15, . . . , 0.95]). For F (ϑt) continuous and strictly monotonically increasing

(such as a normal cdf) the bin midpoints at time t are determined by the mid-quantiles

as follows

b∗i = F−1
(
q∗i |ϑτ(t)

)
.

For discrete variables one can either use the generalized inverse distribution function,

or use a continuous approximation to the associated discrete distribution. For instance

for a Poisson variable with a large enough mean, the normal approximation could be

adopted. We note in general, the adaptive approach can be easily implemented in any

programming language or software for statistical computing.

4.3.2 Hidden Markov model likelihood

Having specified the states of the underlying Markov chain in Section 4.3.1, we aim

to use them to approximate the joint SCDL (4.2.1) by embedding it into an HMM

form (below, to ease the notation, we skip θ in conditioning). We relate each state

of the hidden Markov process with the relevant augmented states and observations.

This imposes a time structure on the SCDL integral (4.4.16) with respect to the “in-

tegration time” and thus allows us to cast it into a likelihood of an HMM. Note that

without any form of DA the likelihood can be simply decomposed by making use of

the Markov property of the original state process xt, i.e. p(y) =
∫
p(y|x)p(x)dx =∫

x0

∏T
t=1 p(yt|xt)p(xt|xt−1)dx0dx1 . . . dxT .

Motivating example For illustration, consider the state specification from Figure

4.2.1a to which we add conditionally independent observations to result in an SSM pre-

sented in Figure 4.3.1. Such a system is representative for e.g. dynamic factor models

(linear or nonlinear), with yt multivariate, broadly applied in macroeconometrics and

finance; it was also used by e.g. Abadi et al. (2010) to model population dynamics of

little owls.

We specify xaug = {x1,t}Tt=0 =: x1 (state 1) and xint = {x2,t}Tt=0 =: x2 (state 2), which

corresponds to the “horizontal” integration. Hence we put Tint = Taug = {0, 1, . . . , T},
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τ(t) = t, a(t) = t and o(t) = t. We denote T ∗ = |T+
int|. Using the temporal dependence

in this system, the SCDL p(y,xaug) can be expressed as

p(y,xaug) = p(x1,0)
T∏
t=1

p(yt|x1,t)p(x1,t|x1,t−1)),

= p(x1,0)
T ∗∏
t=1

p(yo(t)|x1,a(t))p(x1,a(t)|x1,a(t−1)),

which is not tractable without integrating out x2. Hence, we marginalise over x2 and

aim at approximating the resulting integral using a quadrature based on B bins Bk,
k = 1, . . . , B, as follows

p(y,xaug) =

∫
. . .

∫
p(x1,0)p(x2,0)

T ∗∏
t=1

p(yo(t)|x1,a(t), x2,τ(t))p(x1,a(t)|x1,a(t−1), x2,τ(t−1))

p(x2,τ(t)|x1,a(t−1), x2,τ(t−1))dx2,τ(T ∗) . . . dx2,τ(1)

≈
B∑

k1=1

· · ·
B∑

kT∗=1

p(x1,0)p(x2,0)
T ∗∏
t=1

p(yo(t)|x1,a(t), x2,τ(t) ∈ Bkt)

p(x1,a(t)|x1,a(t−1), x2,τ(t−1) ∈ Bkt−1)

p(x2,τ(t) ∈ Bkt |x1,a(t−1), x2,τ(t−1) ∈ Bkt−1).

(4.3.1)

The above approximation has a natural interpretation in terms of HMM by associating

the events x2,τ(t) ∈ Bk with states of a hidden Markov process on B states. The

transition matrix of this process is

Γt =
[
P(x2,τ(t) ∈ B∗k|x1,a(t−1), x2,τ(t−1) ∈ B∗l )

]
k,l=1,...,B

, (4.3.2)

for t ∈ 1, 2, . . . , T ∗. Next to the transition matrix, we need to specify two matrices

for the “augmented data”: one for the augmented states xaug and one for the real

observations y. This is different compared to standard HMMs in which only the latter

is used. We specify the likelihood matrices for the augmented states and the observation

as follows

Pt = diag
(
p(x1,a(t)|x1,a(t−1), x2,τ(t−1) ∈ B∗l )

)
l=1,...,B

, (4.3.3)

Qt = diag
(
p(yo(t)|x1,a(t), x2,τ(t) ∈ B∗k)

)
k=1,...,B

. (4.3.4)
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Notice that for both the integrated and augmented states the conditioning is with

respect to their previous realisations, whilst for the observations it is with respect to

the current values of both states. The quadrature based approximation to the SCDL

(4.3.1) can be then approximated as

p̂B(y,xaug) = p(x1,0)u0

(
T ∗∏
t=1

Pa(t)Γτ(t)Qτ(t)

)
1, (4.3.5)

where u0 =
[
P(x2,0 ∈ B1) . . . P(x2,0 ∈ BB)

]
is the initial distribution of the Markov

chain. Appendix 4.A.1 presents the underlying SSM and the details of the derivations.

x1,t−1 x1,t x1,t+1

x2,t−1 x2,t x2,t+1

yt−1 yt yt+1

Pt−1 Pt Pt+1 Pt+2

Γt−1 Γt Γt+1 Γt+2

Qt−1 Qt Qt+1

Γt−1 Γt Γt+1 Γt+2

Pt−1 Pt Pt+1
Pt+2

Qt−1 Qt Qt+1

Figure 4.3.1: Illustration of combining DA and HMM structure. Conditionally independent observations added to the
state specification from Figure 4.2.1a. Diamonds represent the imputed states, circles – the integrated states. Dashed
lines used for the relations from the imputed (known) states.

General formulation The generic matrices of the HMM-based approximation have

the form

Γt =
[
P(xint,τ(t) ∈ Bk|xint,τ(t−1) ∈ Bl, xaug,a(t−1))

]
k,l=1,...,B

,

Pt = diag
(
p(xaug,a(t)|xint,τ(t−1) ∈ Bl)

)
l=1,...,B

Qt = diag
(
p(yo(t)|xint,τ(t) ∈ Bk,xaug,a(t))

)
k=1,...,B

for t ∈ 1, 2, . . . , T ∗ and lead to the following form of the HMM approximation

p̂B(y,xaug) = p(x1,0)u0Q0

(
T ∗∏
t=1

Pa(t)Γτ(t)Qτ(t)

)
1, (4.3.6)
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which differs from (4.3.5) by including Q0 := diag
(
p(yo(0)|xint,τ(0) ∈ B∗k)

)
k=1,...,B

, which

allows for a dependence of some observations on the initial state of the Markov process8.

We require τ(t) ≥ max{a(t)} and o(t) ⊂ τ(t) ∪ a(t), which is natural given the real

dependencies in the original SSM (4.1.1)–(4.1.3).

4.4 Applications

In this section we consider applications of the proposed SCDA method and assess

their performance. We consider two case studies with distinctively different features

resulting in different integration schemes. The first application involves the dataset

on the Northern lapwing (Vanellus vanellus), which has been extensively analysed in

statistical ecology, see Besbeas et al. (2002), Brooks et al. (2004), King et al. (2008),

and the references therein. We adopt the integrated population modelling approach

of Besbeas et al. (2002), to be explained below, however our main focus is on mod-

elling the abundance of the species via a state space model with discrete states. The

second application relates to the well-known stochastic volatility model (SV), which is

a popular tool to model time-varying volatility especially for financial time series, see

Taylor (1994), Ghysels et al. (1996) or Shephard (1996). Further, we demonstrate how

the SCDA framework can be easily adjusted to accommodate more complex properties

of financial time series such as SV in the mean of Koopman and Uspensky (2002) or

leverage effects, see Jungbacker and Koopman (2007).

Algorithm tuning In each case study we are interested in comparing the perfor-

mance of the standard DA approach with that of the SCDA. To guarantee the between-

method comparability, for each method we perform the estimation using a “vanilla”

RW-MH (single-update) algorithm. We tune each sampler so that the acceptance rates

for each element of the parameter vector θ and the average acceptance rates for each

of the imputed states are “reasonable”, i.e. between 20− 40%.

Such a range corresponds to the seminal results of Gelman et al. (1996) and Roberts and

Rosenthal (2001). The former authors prove that the asymptotically (as the dimension

of the state space diverges to infinity) optimal mean acceptance rate is equal to 0.234 for

a target distribution consisting of i.i.d. components and a normal proposal distribution

of the same dimension as the target. Hence, they do not consider single-state updates

(i.e. one-dimensional increments), for which the later authors deliver the optimal

8The SV model example in Appendix 4.C demonstrates the role of Q0.
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acceptance rate of 0.44 for a normal proposal distribution (see also Rosenthal, 2011).

Generally, a mean acceptance rate of 20–40% is considered to deliver a well-performing

chain.

Effective sample size Since the samples generated by MCMC algorithms are not

independent, standard convergence results for independent MC sampling do not apply;

in particular, the standard variance estimator (i.e. the sample empirical variance)

cannot be used to measure the variance of the empirical average delivered by an MCMC

algorithm. The stochastic dependence in the (stationary) Markov chain X1, X2, . . .

results in the associated asymptotic variance σ2

MCMC taking account of the covariance

in the Markov chain

σ2

MCMC = Var[Xi] + 2
∞∑
k=1

Cov[Xi, Xi+k]

= Var[Xi]

(
1 + 2

∞∑
k=1

ρ(k)

)
︸ ︷︷ ︸

IF

, (4.4.1)

where ρ(k) is the kth order serial correlation (Geyer, 2011). The term in the parenthe-

ses in (4.4.1) is referred to as the autocorrelation function (Geyer, 2011), (integrated)

autocorrelation time (Robert and Casella, 2004, Ch. 12.3.5) or inefficiency factor (IF,

Pitt et al., 2012), which is the name we use. High values of autocorrelation, typically

reported for MCMC sampling, lead to the standard variance estimator underestimating

the true variance σ2

MCMC.

A common measure for assessing the deterioration in the sampling efficiency due to

the draws autocorrelation is the effective sample size (ESS) defined as

ESS =
M

IF
, (4.4.2)

where M is the sample size (Robert and Casella, 2004, Ch. 12.3.5). It indicates what

the size of i.i.d. sample would be, had it the same variance as the MCMC sample.

Equivalently, the IF gives the factor by which the “nominal” MCMC sample size would

need to be increased in order to achieve the same accuracy as an i.i.d. sampling.

In practice, one typically cannot compute the IF directly and needs to estimate it

instead. As noted by Robert and Casella (2004, Ch. 12.3.5) estimation of IF is a

“delicate issue”, as it contains an infinite sum. A possible solution to this problem
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is to set a cut-off value K for the autocorrelation terms being summed up: ÎF =

1+2
∑K

k=1 ρ̂(k). The choice ofK poses the risk of subjectiveness; settingK to the lowest

lag at which ρ̂(k) become insignificant seems to be a reasonable solution suggested by

e.g. Kass et al. (1998) or Pitt et al. (2012) and this is the approach we take here.

4.4.1 Ecological model: lapwings data

We consider a time series of observations relating to census data (abundance index)

of adult British lapwings (Vanellus vanellus), which we denote by y = (y1, . . . , yT ).

The lapwings dataset plays an important role in statistical ecology and has served as

an illustration in several handbooks (see King, 2011; King et al., 2010) and papers

(e.g. Besbeas et al., 2002) in this field. It was also used as an example of a complex

statistical model by e.g. Goudie et al. (2018). We provide the details of this dataset

in Appendix 4.B. Figure 4.4.1 presents the data on the index of lapwings as well as

on the normalised frost days, used as a covariate to describe the survival process. The

latter is based on the number of days below freezing between April of year t and March

of year t + 1, inclusive and is a proxy for harshness of winter, which can affect the

survival probability of wild birds more by lengthy cold periods rather than by low

average temperature.

1965 1970 1975 1980 1985 1990 1995

Year

500

1000

1500

2000
Lapwings: observed census data

1965 1970 1975 1980 1985 1990 1995

Year

-2

-1

0

1

2

3
Frost days (normalised)

Figure 4.4.1: Lapwings census data and normalised frost days.

The counts are only estimates of the true unknown population size, which is as-

sumed to change over time according to a first order Markov process. The latent

population is related to two times series: for first-years and adults, which we denote

N1 = (N1,1, . . . , N1,T ) and Na = (Na,1, . . . , Na,T ), respectively. Hence, the latent state

is given by x = {N1,Na}. Following Besbeas et al. (2002) we model the count data
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via the following state space model:

yt|Na,t,θ ∼ N (Na,t, σ
2
y), (4.4.3)

N1,t+1|Na,t,θ ∼ P(Na,tρtφ1,t), (4.4.4)

Na,t+1|N1,t, Na,t,θ ∼ B
(
(N1,t +Na,t), φa,t

)
, (4.4.5)

N1,0 ∼ NB(r1,0, p1,0), (4.4.6)

Na,0 ∼ NB(ra,0, pa,0), (4.4.7)

for t = 1, . . . , T , where N , P , B and NB stand for normal, Poisson, binomial and

negative binomial distributions, respectively. The model is parametrised by the time-

varying productivity rate ρt, and time-varying survival rates φ1,t and φa,t, for first-years

and adults, respectively, while ai,0 and pi,0 are hyperparameters of the prior distribution

on the initial state value Ni,0, i ∈ {1, a}.

Following Besbeas et al. (2002), we assume the following functional forms for the model

time varying parameters

logitφ1,t = log

(
φ1,t

1− φ1,t

)
= α1 + β1ft,

logitφa,t = log

(
φa,t

1− φa,t

)
= αa + βaft,

log ρt = αρ + βρt̃,

where ft denotes the normalised value of frost days fdays in year t and t̃ the normalised

time index. As explained by King (2011), we introduce normalisation of ft and t̃ to

improve the mixing of the Markov chain and to facilitate the interpretation of the

regression parameters.

To improve the estimation, Besbeas et al. (2002) propose using an additional source

of information provided by the ring-recovery (RR) data, independent from the count

series. The RR model shares with the SSM the survival parameters φ1,t and φa,t but it

does not involve the productivity rate ρt. Instead, the RR models includes the common

time-varying recovery rate λt (denoting the probability that a bird which dies in year

t is recovered), specified to be of the form

logitλt = log

(
λt

1− λt

)
= αλ + βλt̃t.

Combining both models results in the so-called integrated model, which is parametrised
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by the regression parameters and the variance of the observation error. We refer to

Besbeas et al. (2002) for a more detailed description of the integrated model. The

model parameters are collected in a vector θ = (α1, αa, αρ, αλ, β1, βa, βρ, βλ, σ
2
y)
T .

Finally, to complete the Bayesian specification of the model, we set independent vague

priors being normal N (0, 100) for the logistic regression coefficient αi and βi, i ∈
{1, a, ρ, λ}, while for the observation variance σ2

y a conjugate inverse gamma Γ−1(ay, by)

with ay = 0.001 = by is used. For the initial states, we set the following values for the

hyperparameters: for first-years r1,0 = 4 and p1,0 = 0.98 so that the prior mean and

variance of 1-years are roughly 200 and 10, 000, respectively; for adults ra,0 = 111 and

pa,0 = 0.9, so that the prior mean and variance adults are roughly 1, 000 and 10, 000,

respectively.

System (4.4.3)–(4.4.7) is non-Gaussian and nonlinear with the associated likelihood

unavailable in a closed form. It could be analysed using the normal approximation,

which has an advantage that the Kalman filtering and smoothing techniques can be

employed, see Besbeas et al. (2002). However, we aim at estimation of the original

model, in which case the standard approach has been a DA approach. The problem

with the standard DA approach is that it may lead to poorly mixing MCMC algorithms

as demonstrated by King (2011). To this end, we first analyse the dependence structure

in the model to select most promising states to integrate out.

Na,t−1 Na,t Na,t+1

N1,t−1 N1,t N1,t+1

yt−1 yt yt+1

Pt−1 Pt Pt+1 Pt+2

Qt−1 Qt Qt+1

Γt−1 Γt Γt+1
Γt+2

Pt−1
Pt Pt+1

Pt+2

2nd order

Figure 4.4.2: Lapwings data: combining DA and HMM structure. Diamonds represent the imputed nodes, squares
– the data, circles – the unknown variables. Integrating out N1 leads to a second order HMM on Na. Dashed lines
used for the relations from the imputed (known) states.

The two-dimensional state [N1, Na]
T
t=1 follows the first-order Markov process with a

non-trivial transition kernel. We can notice that first-year birds in t only feed into

adults in t + 1. However, adults in t contribute to both the number of first-years and

adults in t + 1, as well as the observed estimate yt. This suggests that reducing the

strength of the dependence structure can be obtained by integrating out N1, while
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imputing Na. This corresponds to the horizontal integration scheme with xint = N1

and xaug = Na. The resulting modified dependence structure is presented in Figure

4.4.2. Marginalising over N1 allows us to simplify the analysis as we only need to

consider Na which now follows a second-order Markov process. A similar second order

structure in this context has also been noted by Besbeas and Morgan (2018).

Hidden Markov Model approximation The resulting SCDL for the augmented

data set (yT ,Na
T )T is given by

p(y,Na|θ) = p(y|Na,θ)p(Na|θ), (4.4.8)

which is still intractable. Hence, we employ an HMM-based approximation to (4.4.8)

discussed in Section 4.3. Since N1,t follows a Poisson distribution, we only need to

specify a truncation value N∗ for the maximum population size for first-years for a

fixed bin approach (i.e. we set bB = N∗, with b0 naturally being equal to 0). Since

the observations y are conditionally independent from N1 given Na, integrating out of

N1 can be done only for the second term on the right hand side (4.4.8), to obtain the

marginal pmf for Na. Below, to ease the notation, we omit θ in the conditioning. The

marginal pmf of Na is given by

p(Na) =p(Na,0, Na,1, . . . , Na,T ) (4.4.9)

=
∑
N1

p(Na,0), p(N1,0)p(N1,1|Na,0)

× p(Na,1|Na,0, N1,0) . . . p(N1,T |Na,T−1) p(Na,T |Na,T−1, N1,T−1)

and we want next to approximate the elements of this multiple sum. To simplify the

exposition below we consider the “exact” approximation with the bin size equal to one,

which is possible due to the discreet nature of the integrated state, and in which the

approximation error is only due to N∗, the upper limit of the allowed integration range.

A typical element of the sum in (4.4.9) can be approximated as (for t ≥ 2)

p(Na,t|Na,0:t−1) =
N∗∑
k=0

P(N1,t−1 = k|Na,0:t−1)p(Na,tNa,0:t−1, N1,t−1 = k),

=
N∗∑
k=0

P(N1,t−1 = k|Na,t−2)︸ ︷︷ ︸
=:uk,t−1

p(Na,t|Na,t−1, N1,t−1 = k)︸ ︷︷ ︸
=:pk,t

. (4.4.10)
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In (4.4.10) pk,t denotes the conditional pmf of Na,t given N1,t−1 = k and Na,t−1 for

which

pk,t = p(Na,t|Na,t−1, N1,t−1 = k) ≡ B
(
(Na,t−1 + k), φa,t−1

)
.

Further, uk,t denotes the “quasi-unconditional”9 probability of N1,t = k. These uncon-

ditional probabilities of the hidden states can be derived as

uk,t = P(N1,t = k|Na,t−1)

=
N∗∑
l=0

P(N1,t−1 = l|Na,0:t−1)P(N1,t = k|N1,t−1 = l,Na,0:t−1)

=
N∗∑
l=0

P(N1,t−1 = l|Na,t−2)︸ ︷︷ ︸
=ul,t−1

P(N1,t = k|Na,t−1)︸ ︷︷ ︸
=:γlk,t

,

which we collect in a vector ut =
[
uk,t

]N∗
k=1

. In general, the unconditional probabilities of

an HMM are related to each other via the transition probabilities γlk,t (i.e. conditional

probabilities) as ut = ut−1Γt with Γt =
[
γlk,t

]N∗
l,k=1

. Here we have γlk,t = P(N1,t =

k|N1,t−1 = l,Na,0:t−1), but since in the model N1,t’s are mutually independent given

Na,t−1 we can simplify the transition probabilities to

γlk,t = P(N1,t = k|Na,t−1) ≡ P(Na,tρtφ1,t)

for k = 0, . . . , N∗−1, while for k = N∗ we need γlk,t = 1−
∑N∗−1

j=0 γlj,t to ensure a valid

probability distribution. This means that the time varying state transition matrix Γt

takes a simple form

Γt =
[
γ1,t . . . γN∗−1,t γN∗,t

]
,

i.e. with each column equal to γk,t = γlk,t1.

9By “quasi-unconditional” we mean unconditional in the sense of the Markov structure, i.e. previous
latent states N1,t−1, N1,t−2, dots, but not in terms of the imputed values Na, which we treat as
known, and the parameter vector θ (see Zucchini et al., 2016, p.16, 32).
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Finally, we can conveniently express (4.4.10) using matrix notation as

p(Na,t|Na,0:t−1) =

γ11,t−1 . . . γ1N∗,t−1

...
. . .

...

γ11,t−1 . . . γ1N∗,t−1


︸ ︷︷ ︸

=Γt−1

p1,t . . . 0
...

. . .
...

0 . . . pN∗,t


︸ ︷︷ ︸

=:Pt

1
...

1


︸︷︷︸

1

= Γt−1Pt1.

Combining (4.4.9) and (4.4.10) yields the HMM form for the joint pmf of the imputed

states

p(Na) = u0p(Na,0)

(
T∏
t=1

PtΓt

)
1,

where u0 =
[
p(N1,0) = 0 . . . p(N1,0) = N∗

]T
is the initial state distribution.

As stated above, the real observations yt, conditionally on Na,t, are independent of N1,t

so that the observation matrix becomes a scaled identity matrix

Qt = p(yt|Na,t)I = N (yt|Na,t, σ
2
y)I.

Finally, the approximation to the SCDL (4.4.8) can be expressed as

p(y,Na|θ) = p(y|Na)p(Na) = u0p(Na,0)

(
T∏
t=1

PtΓtQt

)
1.

State acceptance rate Let the current state of a Markov chain be N
(j)
a = {N (j)

a,t }Tt=1

and consider updating of its t’th component. Let the proposed value be N
(•)
a,t , with

N
(•)
a = {N (j)

a,1 , . . . , N
(j)
a,t−1, N

(•)
a,t , N

(j)
a,t+1, . . . , N

(j)
a,T}. The move is accepted with the prob-

ability 1 ∧ a(N
(j)
a ,N

(•)
a ), where a(N

(j)
a ,N

(•)
a ) is the acceptance rate. Since we use a

single update MH-RW with a symmetric (uniform) proposal distribution, the proposal

terms required for the ratio cancel in the acceptance rate, which then can be further

simplified as follows

a(N(j)
a ,N

(•)
a ) =

p(y,N
(•)
a |θ)p(θ)

p(y,N
(j)
a |θ)p(θ)

=
p(y,N

(•)
a |θ)

p(y,N
(j)
a |θ)

=
p(yt|N (•)

t )1TΓ
(•)
t−1P

(•)
t Γ

(•)
t P

(•)
t+1Γ

(•)
t+1P

(•)
t+21

p(yt|N (j)
t )1TΓ

(j)
t−1P

(j)
t Γ

(j)
t P

(j)
t+1Γ

(j)
t+1P

(j)
t+21

,
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Method Absolute time Relative time

DA 1203.67 1.00

Adapt10 978.27 0.81

Adapt20 1067.61 0.89

Adapt30 1024.87 0.85

Bin10 1022.32 0.85

Bin20 1060.41 0.88

Bin30 1135.83 0.94

Exact 2855.16 2.37

Table 4.4.1: Lapwings data: absolute (in seconds) and relative (wrt the full DA) computation times for M = 100, 000
posterior draws after a burn-in of 10, 000.

where the superscripts (j) and (•) refer to values computed based on the current state

of the Markov chain, N
(j)
a,t , and on the proposed value N

(•)
a,t , respectively. Hence, due

to the second-order structure we need five elements of the vector Na when updating

Na,t (i.e. Na,t−2, Na,t−1, Na,t, Na,t+1 and Na,t+2), while all other terms cancel in the

acceptance probability as they are conditionally independent.

Results We compare the performance of the standard DA approach, in which we

impute θ, N1 and Na, with that of the SCDA, in which we impute θ and Na. As already

mentioned above, for comparability we use a “vanilla” MH RW algorithm for the

estimation of the integrated model. In particular, we use a discrete uniform Metropolis

RW algorithm to perform single-step updates of the states and normal Metropolis RW

to sample the logistic regression coefficients. For the observation variance we use a

Gibbs update with the conditional distribution being of the form

σ2
y|Na ∼ Γ−1

(
ay +

T

2
, by +

1

2

T∑
t=1

(yt −Na,t)
2

)
.

For the SCDA we first consider the “exact” integration used in the derivations above, in

which the only influence on the posterior is the upper limit of the admissible integration

range which we set bB = 679. This choice of the upper bound is based on the results for

first-years from previous studies and from preliminary runs of the full DA. We further

consider a number of approximate schemes based on fixed and adaptive intervals (with

10, 20 and 30 bins in each case). For adaptive bins we use a normal approximation to the

Poisson distribution as mentioned in Section 4.3.1. Each time we draw M = 100, 000

draws after a burn-in of 10, 000.
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Table 4.4.1 summarises computation time for each of the schemes. As expected, the

exact method is the slowest (2.5 times than the full DA approach) as each integration is

based on summing of 680 elements. All the approximate schemes are faster (10–20%)

than the DA approach thanks to their efficient implementation based on vectorised

computations with relatively few elements to be summed every iteration. Tables 4.4.2

and 4.4.3 present the results for θ and for selected elements of Na, respectively, and we

report posterior means and standard deviations as well as ESSs (as defined in (4.4.2))

and ESSs per second. Figure 4.4.3 illustrates the posterior means and 95% credible

intervals (CI) for the adult population comparing the accuracy of the full DA with that

of the SCDA methods (separately for the adaptive intervals and fixed bins). We can

see that all the methods deliver virtually the same posterior means and comparable

95% symmetric CI, with only the fixed bin case with 10 bins deviating slightly from

all other methods. Interestingly, 10 adaptive bins give very comparable estimates to

the other approaches in this case, indicating an increased accuracy of the adaptive

approach.

Our results demonstrate the efficiency of the proposed SCDA approach: all the SCDA-

based schemes, except the one based on 10 fixed bins, outperform the full DA approach

by delivering much higher (up to 4 times) ESSs and ESSs per second. This can be also

seen in Figures 4.4.4 and 4.4.5 which show the autocorrelation (ACF) plots for the

SSM parameters (except for Gibbs-updated σ2
y) and for the selected elements of Na,

respectively. In most of the illustrated cases the ACF plots for all the SCDA variants

are much flatter that these for the full DA approach.
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Method α1 αa αρ αλ β1 βa βρ βλ σ2
y

DA Mean 0.547 1.574 -1.189 -4.578 -0.164 -0.240 -0.348 -0.364 30180.443

(Std) (0.068) (0.071) (0.091) (0.035) (0.062) (0.039) (0.043) (0.040) (8890.540)

ESS 685.018 124.003 111.731 1089.194 1050.268 389.651 105.958 8205.778 1245.440

[1203.67 s] ESS/sec. 0.569 0.103 0.093 0.905 0.873 0.324 0.088 6.817 1.035

Adapt10 Mean 0.547 1.564 -1.180 -4.580 -0.163 -0.239 -0.350 -0.364 30355.448

(Std) (0.068) (0.070) (0.092) (0.035) (0.061) (0.040) (0.040) (0.040) (8928.277)

ESS 1490.019 390.223 316.009 3035.051 2777.217 527.023 126.022 7491.584 1852.490

[978.27 s] ESS/sec. 1.523 0.399 0.323 3.102 2.839 0.539 0.129 7.658 1.894

Adapt20 Mean 0.544 1.564 -1.173 -4.581 -0.162 -0.238 -0.342 -0.363 30002.520

(Std) (0.069) (0.072) (0.094) (0.035) (0.060) (0.039) (0.039) (0.040) (8759.372)

ESS 1359.221 395.695 324.918 2720.786 2685.188 586.964 243.425 8212.358 2074.915

[1067.62 s] ESS/sec. 1.273 0.371 0.304 2.548 2.515 0.550 0.228 7.692 1.944

Adapt30 Mean 0.542 1.561 -1.166 -4.581 -0.162 -0.241 -0.339 -0.363 30311.546

(Std) (0.069) (0.071) (0.092) (0.036) (0.061) (0.039) (0.040) (0.040) (8888.626)

ESS 1438.464 322.169 243.433 2736.107 2471.447 563.625 195.736 7146.030 2129.241

[1024.87 s] ESS/sec. 1.404 0.314 0.238 2.670 2.411 0.550 0.191 6.973 2.078

Bin10 Mean 0.512 1.441 -1.044 -4.599 -0.207 -0.205 -0.348 -0.353 29992.001

(Std) (0.070) (0.055) (0.063) (0.034) (0.050) (0.039) (0.022) (0.040) (8837.189)

ESS 942.247 34.191 37.276 562.131 181.066 104.744 282.356 8770.878 1627.515

[1022.32 s] ESS/sec. 0.922 0.033 0.036 0.550 0.177 0.102 0.276 8.579 1.592

Bin20 Mean 0.546 1.570 -1.179 -4.579 -0.170 -0.240 -0.343 -0.364 30156.695

(Std) (0.069) (0.069) (0.090) (0.035) (0.061) (0.039) (0.040) (0.040) (8802.537)

ESS 1250.068 269.489 210.552 2328.072 2566.054 525.402 139.107 8582.549 2269.829

[1060.41 s] ESS/sec. 1.179 0.254 0.199 2.195 2.420 0.495 0.131 8.094 2.141

Bin30 Mean 0.545 1.562 -1.170 -4.580 -0.162 -0.240 -0.342 -0.363 30012.541

(Std) (0.069) (0.073) (0.095) (0.035) (0.061) (0.039) (0.040) (0.040) (8698.313)

ESS 1758.336 438.518 329.308 2901.919 2873.035 501.803 207.643 7613.013 2705.886

[1135.83 s] ESS/sec. 1.548 0.386 0.290 2.555 2.529 0.442 0.183 6.703 2.382

Exact Mean 0.545 1.564 -1.175 -4.580 -0.162 -0.240 -0.345 -0.363 30063.430

(Std) (0.068) (0.069) (0.090) (0.035) (0.060) (0.039) (0.042) (0.040) (8770.776)

ESS 1631.604 433.106 361.747 3058.624 2658.813 720.514 191.434 8859.552 2734.263

[2855.16 s] ESS/sec. 0.571 0.152 0.127 1.071 0.931 0.252 0.067 3.103 0.958

ESS: at lag equal to the lowest order at which sample autocorrelation is
not significant.

Computing times (in seconds) in square brackets.

Table 4.4.2: Posterior means, standard deviations and effective sample sizes (ESS) of the model parameters for
M = 100, 000 posterior draws after a burn-in of 10, 000 for the lapwings data. The highest ESS and ESS/sec. for each
parameter in bold.
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Method Na4 Na8 Na12 Na16 Na20 Na24 Na28 Na32 Na36 Namin Namax

DA Mean 1083.511 1325.452 1674.379 1935.843 1614.735 1264.606 1174.201 964.850 776.152 1113.758 1083.511

(Std) (26.311) (43.084) (52.062) (67.986) (53.974) (53.679) (49.459) (59.570) (72.066) (50.975) (26.311)

ESS 459.890 179.262 120.533 134.145 147.491 154.218 59.186 61.888 68.193 55.390 459.890

[1203.67 s] ESS/sec. 0.382 0.149 0.100 0.111 0.123 0.128 0.049 0.051 0.057 0.046 0.382

Adapt10 Mean 1083.463 1326.451 1681.573 1947.344 1621.635 1268.140 1174.992 962.144 770.630 1113.567 1083.463

(Std) (26.252) (43.505) (51.511) (68.960) (53.635) (56.490) (49.993) (56.982) (66.910) (51.062) (26.252)

ESS 879.048 393.504 317.925 335.006 294.857 234.322 42.972 46.077 51.279 41.776 879.048

[978.27 s] ESS/sec. 0.899 0.402 0.325 0.342 0.301 0.240 0.044 0.047 0.052 0.043 0.899

Adapt20 Mean 1081.745 1320.731 1670.036 1934.081 1615.289 1268.925 1181.088 973.608 785.422 1121.175 1081.745

(Std) (27.448) (44.994) (52.415) (67.959) (51.419) (53.695) (46.369) (51.319) (61.671) (46.408) (27.448)

ESS 792.495 300.795 262.727 413.404 298.921 310.999 173.526 150.006 160.730 167.407 792.495

[1067.62 s] ESS/sec. 0.742 0.282 0.246 0.387 0.280 0.291 0.163 0.141 0.151 0.157 0.742

Adapt30 Mean 1081.738 1319.287 1670.942 1938.897 1617.392 1268.431 1184.041 978.162 791.521 1124.325 1081.738

(Std) (27.373) (45.491) (51.544) (65.247) (53.622) (54.570) (48.404) (56.590) (68.242) (49.640) (27.373)

ESS 596.757 278.204 246.717 434.153 326.282 305.667 180.570 154.889 163.795 170.926 596.757

[1024.87 s] ESS/sec. 0.582 0.271 0.241 0.424 0.318 0.298 0.176 0.151 0.160 0.167 0.582

Bin10 Mean 1075.915 1343.027 1699.239 1979.991 1671.882 1313.004 1194.677 954.958 733.686 1140.264 1075.915

(Std) (26.815) (43.436) (50.665) (62.415) (48.444) (54.649) (42.543) (39.704) (41.444) (43.179) (26.815)

ESS 868.244 310.552 327.451 243.190 172.939 108.027 97.045 162.952 91.937 87.733 868.244

[1022.32 s] ESS/sec. 0.849 0.304 0.320 0.238 0.169 0.106 0.095 0.159 0.090 0.086 0.849

Bin20 Mean 1079.800 1319.959 1671.116 1939.171 1619.882 1270.619 1183.223 976.198 788.919 1123.716 1079.800

(Std) (25.975) (44.138) (51.979) (67.014) (52.053) (54.001) (46.782) (53.316) (64.386) (47.502) (25.975)

ESS 785.417 279.161 225.312 331.389 344.148 328.106 73.864 57.640 63.944 67.105 785.417

[1060.41 s] ESS/sec. 0.741 0.263 0.212 0.313 0.325 0.309 0.070 0.054 0.060 0.063 0.741

Bin30 Mean 1079.485 1320.178 1671.219 1936.264 1615.844 1268.040 1181.895 975.230 787.549 1121.970 1079.485

(Std) (25.719) (43.238) (47.997) (62.926) (50.327) (53.921) (46.464) (53.458) (65.120) (47.102) (25.719)

ESS 911.428 369.874 373.588 504.546 346.512 246.825 111.292 89.719 98.283 102.004 911.428

[1135.83 s] ESS/sec. 0.802 0.326 0.329 0.444 0.305 0.217 0.098 0.079 0.087 0.090 0.802

Exact Mean 1083.134 1324.134 1675.323 1939.629 1615.882 1265.869 1176.687 968.356 780.241 1116.332 1083.134

(Std) (27.191) (44.555) (52.061) (67.385) (53.858) (54.547) (46.090) (54.115) (66.988) (47.247) (27.191)

ESS 902.234 349.462 293.269 365.968 402.009 418.141 196.821 121.888 116.693 167.980 902.234

[2855.16 s] ESS/sec. 0.316 0.122 0.103 0.128 0.141 0.146 0.069 0.043 0.041 0.059 0.316

ESS: at lag equal to the lowest order at which sample autocorrelation is
not significant.

Namin/Namax: corresponding to the lowest/highest ESS for the DA
method.

Computing times (in seconds) in square brackets.

Table 4.4.3: Posterior means, standard deviations and effective sample sizes (ESS) of the model parameters for
M = 100, 000 posterior draws after a burn-in of 10, 000 for the lapwings data. The highest ESS and ESS/sec. for each
parameter in bold.
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Figure 4.4.3: Lapwings data: the posterior means and 95% CI for the adult population.
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Figure 4.4.4: Lapwings data: ACF plots for the SSM parameters.
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Figure 4.4.5: Lapwings data: ACF plots for the adult population.
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4.4.2 Financial model: stochastic volatility

As our second illustration we consider the SV model in its basic form given by

yt|ht,θ ∼ N (0, exp(ht)) , (4.4.11)

ht+1|ht ∼ N
(
µ+ φ(ht − µ), σ2

)
, (4.4.12)

h0 ∼ N
(
µ,

σ2

1− φ2

)
, (4.4.13)

for t = 1, . . . , T . We adopt the prior specification of Kim et al. (1998)

µ ∼ N (0, σ2
µ0),

φ+ 1

2
∼ B(αφ0, βφ0),

σ2 ∼ IG(ασ20, βσ20),

with σ2
µ0 = 10, αφ0 = 20, βφ0 = 1.5, ασ20 = 5/2, βσ20 = 0.05/2. Estimation of the SV

model has been considered as a challenging problem due to the intractable likelihood

p(y|θ) =

∫
p(y,h)dh =

∫
p(h0)

T∏
t=1

p(yt|ht)p(ht|ht−1)dh0dh1 . . . dhT . (4.4.14)

Some of the previous approaches to tackle this issue include standard DA approach, in

which the latent volatilities are imputed in an MCMC scheme, see Kim et al. (1998),

Omori et al. (2007). Then, the augmented likelihood can be expressed in a closed form

as

p(y,h|θ) = p(h0)
T∏
t=1

p(yt|ht)p(ht|ht−1).

An alternative approach is provided by Fridman and Harris (1998) or Langrock et al.

(2012b) who propose numerical integration of the latent states. In particular, Langrock

et al. (2012b) approximate (4.4.14) using an HMM by discretising the state space of

the SV model. They consider a form of numerical integration of the latent states

based on a grid of B equally sized intervals (bins) Bi = [bi−1, bi), i = 1, . . . , B, with

the corresponding representative points b∗i (e.g. the midpoints). The range of the

admissible values for the demeaned volatility, b0 and bB is set e.g. to ±5σh, with σh

being the stationary (unconditional) standard deviation of the logvolatility process.
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This leads to an approximation of (4.4.14) via

p(y|θ) ≈ u0

T∏
t=1

ΓQt1,

where Γ =
[
γi,j

]
i,j=1,...,B

, with

γi,j = P(ht − µ ∈ Bj|ht−1 − µ = b∗i )

= Φ

(
bj − φb∗i

σ

)
− Φ

(
bj−1 − φb∗i

σ

)
,

Qt = diag

(
ϕ

(
yt

exp((µ+ b∗i )/2)

))
i=1,...,B

,

where Φ and ϕ denote the cdf and the pdf of the standard normal density, respectively.

Notice that the transition probabilities are time-constant so that the underlying Markov

chain is homogeneous. Sandmann and Koopman (1998) point out that for the SV

model such a form of numerical integration might not be always suitable since a fixed

grid cannot efficiently capture different scales of volatility (periods of low and high

volatility). We address this issue by suggesting an adaptive and more efficient HMM-

based approximation as an alternative to the fixed bins used by Langrock et al. (2012b).

Finally, we note that for µ and σ2 Gibbs updates can be performed based on full

conditional densities, see Kim et al. (1998). Furthermore, numerous enhancements for

sampling of the hidden states has been devised, Kim et al. (1998), Omori et al. (2007)

and Bos (2011) for an overview. However, our aim is to provide a general framework

requiring only “vanilla” type updates (based on a RW–MH algorithm) and hence we

consider the standard full DA as a comparison benchmark.

Dependence structure and SCDL The basic SV model specification concerns

a single one-dimensional state on the real line, which is saliently different from the

lapwings case. The sampling inefficiency in the current case originates from a high

persistence of the logvolatility process. In order to break this dependence, we propose to

impute h2T, the even states and to integrate out h2T+1, the odd ones. This corresponds

to the vertical integration scheme with xint = h2T+1 and xaug = h2T. Without loss of

generality we assume that T is odd so that hT is integrated out; if T is even then we

add one extra integration based on uniformly distributed hT+1. We denote T ∗ = T−1
2

132



4.4. APPLICATIONS

and skip θ in conditioning for simplicity. The exact SCDL is given by

p(y,h2T) = p(h0)

∫
p(h1|h0)p(y1|h0)

T ∗∏
t=1

p(y2t+1|h2t+1)p(h2t+1|h2t)

p(y2t|h2t)p(h2t|h2t−1)dh1 . . . dhT ,

(4.4.15)

and conditioning on the even states allows us to split (4.4.15) into a product T ∗+ 1 of

integrals

p(y,h2T) = p(h0)︸ ︷︷ ︸
=:C0

∫
p(h1|h0)p(y1|h0)dh1︸ ︷︷ ︸

=:D0

×
T ∗∏
t=1

p(y2t|h2t)︸ ︷︷ ︸
=:Ct

∫
p(y2t+1|h2t+1)p(h2t+1|h2t)p(h2t|h2t−1)dh2t+1︸ ︷︷ ︸

=:Dt

.

(4.4.16)

Since the integrals in (4.4.16) are conditionally independent, it can be expressed as

p(y,h2T) = C0D0

T ∗∏
t=1

CtDt =
T ∗∏
t=0

CtDt,

which block structure is helpful for visualising the MH update scheme as we present

below.

We denote by h2T
(j) = {h(j)

0 , h
(j)
2 , . . . , h

(j)
2t+2, . . . , h

(j)
T } the current sequence of the im-

puted states and suppose that a single RW MH step for h2t+2 results in the proposed

sequence h2T
(•) with the element h

(j)
2t+2 replaced by the candidate h

(•)
2t+2. Since the

proposal distribution is symmetric and thus the proposal terms cancel out, the state

acceptance rate is given by

a(h
(•)
2t+2, h

(j)
2t+2) =

p(y, h
(•)
2T |θ)

p(y, h
(j)
2T |θ)

=
C

(•)
t D

(•)
t D

(•)
t+1

C
(j)
t D

(j)
t D

(j)
t+1

, (4.4.17)

where (•) and (j) refer to the blocks evaluated on the proposed and the current variable,

respectively (either the imputed state here or the parameter vector below).

For a single step RW MH update of θ, given h
(j)
2T and y:

a(θ(j),θ(•)) =
p(y,h2T

(j)|θ(•))p(θ(•))

p(y,h2T
(j)|θ(j))p(θ(j))

=
p(θ(•))

∏T ∗

t=0D
(•)
t

p(θ(j))
∏T ∗

t=0Dt(j)
. (4.4.18)
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Hidden Markov model approximation In practice the integrals Dt cannot be

evaluated analytically and a form of numerical approximation needs to be adopted. We

first propose to approximate each integral using a B-state HMM structure with fixed

bins. This approach follows Langrock et al. (2012b) and consists in relating zt = k, the

Markov chain being in state k, to the event of h2t+1 − µ ∈ Bk, the demeaned volatility

in an odd time period 2t + 1 falling into the kth bin Bk. Falling into bin Bk can be

specified as e.g. lying in the interval [bk−1, bk) or being equal to this interval’s midpoint

b∗k = bk−1+bk
2

. We take equally spaced bins, each of length λ. In particular, we consider

approximation of the following form

Dt ≈ D̂t =
B∑
k=1

p(y2t+1|h2t+1 − µ = b∗k)p(h2t+2|h2t+1 − µ = b∗k)p(h2t+1 − µ ∈ Bi|h2t).

(4.4.19)

The last term in (4.4.19) can be approximated as

p(h2t+1 − µ ∈ Bk|h2t) ≈ Φ

(
bk − φ(h2t − µ)

σ

)
− Φ

(
bk−1 − φ(h2t − µ)

σ

)
,

which is adopted in Langrock et al. (2012b), or using a simpler midpoint approximation

p(h2t+1 − µ ∈ Bk|h2t) ≈ λϕ

(
b∗k − φ(h2t − µ)

σ

)
,

which we adopt in our application due to computing time. Then the state acceptance

rate (4.4.17) is approximated as

a(h
(•)
2t+2, h

(j)
2t+2) ≈

ϕ

(
y2t+1

exp(h
(•)
2t+2/2)

)∑B
k=1 ϕ

(
y2t+1

exp((b∗k+µ)/2)

)
ϕ

(
h
(∗)
2t+2−µ−φb∗k

σ

)
ϕ
(
b∗k−φ(h2t−µ)

σ

)
φ

(
y2t+1

exp(h
(j)
2t+2/2)

)∑B
k=1 ϕ

(
y2t+1

exp((b∗k+µ)/2)

)
ϕ

(
h
(j)
2t+2−µ−φb∗k

σ

)
ϕ
(
b∗k−φ(h2t−µ)

σ

)

×

∑B
k=1 ϕ

(
y2t+3

exp((b∗k+µ)/2)

)
ϕ

(
h
(j)
2t+4−µ−φb∗k

σ

)
ϕ

(
b∗k−φ(h

(∗)
2t+2−µ)

σ

)
∑B

k=1 ϕ
(

y2t+3

exp((b∗k+µ)/2)

)
ϕ

(
h
(j)
2t+4−µ−φb∗k

σ

)
ϕ

(
b∗k−φ(h

(j)
2t+2−µ)

σ

) ,
while for the parameter acceptance rate (4.4.18) we obtain

a(θ(j),θ(•)) ≈ p(θ(•))
∏T ∗

t=0 D̂
(•)
t

p(θ(j))
∏T ∗

t=0 D̂
(j)
t

,
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where

D̂
(•)
t =

B∑
k=1

ϕ

(
y2t+1

exp((b∗k + µ(•))/2)

)
ϕ

(
b∗k − φ(•)(h

(j)
2t − µ(•))

σ(•)

)
ϕ

(
h

(j)
2t+2 − µ(•) − φ(•)b∗k

σ(•)

)
,

D̂
(j)
t =

B∑
k=1

ϕ

(
y2t+1

exp((b∗k + µ(j))/2)

)
ϕ

(
b∗k − φ(h

(j)
2t − µ(j))

σ(j)

)
ϕ

(
h

(j)
2t+2 − µ(j) − φ(j)b∗k

σ(j)

)
.

Adaptive HMM-based approximation An alternative approach to the approx-

imation task is to use adaptive intervals. In particular, quantiles corresponding to

intervals of equal probability can be used. Then, instead of specifying the grid points,

we fix the probabilities for each bin, which previously needed to be determined. Thus,

we face a quantile determination problem, as these are needed to obtain the midpoint

values (used in conditioning). Consider a vector of quantiles q = [q0, q1, . . . , qB] to-

gether with their midpoints q∗ = [q∗1, q
∗
1, . . . , q

∗
B] given by q∗k = qk−1+qk

2
. Then the bin

midpoints at time 2t+ 1 determined by the mid-quantiles are given by

β∗k,2t+1 = φ(h2t − µ) + σ · Φ−1 (q∗k) , k = 1, . . . , B,

where h2t the imputed volatility for the previous time period. This means that

γk,t = p(h2t+1 − µ ∈ Bk,2t+1|h2t,θ) =
1

B

and we approximate Dt as

Dt ≈
B∑
k=1

ϕ

(
y2t+1

exp((β∗k,2t+1 + µ)/2)

)
ϕ

(
h2t+2 − µ− φβ∗k,2t+1

σ

)
· 1

B
,

where the constant transition probabilities from an imputed state cancel out in the

acceptance ratios.
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Figure 4.4.6: SV model: combining DA and the HMM-based integration. Diamonds represent the imputed states,

circles – the states being integrated out. h
(k)
t denotes ht ∈ Bk. The graph presents a single imputation problem of h2t

with the associated integrations.

Extensions of the basic SV model

SV in the mean The proposed SCDA scheme easily extends to more complex mod-

els, e.g. the popular Stochastic Volatility in the Mean (SVM) model of Koopman and

Uspensky (2002) (see also Chan, 2017). Its basic specification is given by

yt|ht,θ ∼ N (β exp(ht), exp(ht)) , (4.4.20)

ht+1|ht ∼ N
(
µ+ φ(ht − µ), σ2

)
, (4.4.21)

h0 ∼ N
(
µ,

σ2

1− φ2

)
, (4.4.22)

for t = 1, . . . , T . Hence, the latent volatility process ht influences both the conditional

variance and the conditional mean of the observation series yt, which is additionally

controlled by a scaling parameter β. For the volatility parameters µ, φ and σ2 we

adopt the prior specification as for the standard SV model, while for the mean-scaling

parameter we specify β ∼ N (0, σ2
β0

), with σ2
β0

= 10.

SV with leverage logreturns to the current value of the volatility process. This

effect is typically modelled as a negative correlation between the last period logre-

turns and the current value of volatility. The motivation behind the leverage effect is

that the volatility in financial markets may adapt differently to positive and negative
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shocks/news (affecting logreturns), where large negative shocks are likely to increase

the volatility. The SV model with leverage (SVL) has been frequently analysed in

the literature, see Jungbacker and Koopman (2007), Meyer and Yu (2000), Yu (2005),

Durbin and Koopman (2012, Section 9.5.5.) or Zucchini et al. (2016, Section 20.2.3).

For convenience, we rewrite the basic SV model (4.4.11)–(4.4.13) as

yt = exp(ht/2)εt, εt ∼ N (0, 1) ,

ht+1 = µ+ φ(ht − µ) + ηt, ηt ∼ N
(
0, σ2

)
,

h1 ∼ N
(
µ,

σ2

1− φ2

)
,

for t = 1, . . . , T . The only difference between the SVL model and the basic specification

of the SV model is that now the error terms εt and ηt are assumed to be correlated:

corr[εt, ηt] = ρ 6= 0, with ρ typically estimated to be negative10. This apparently slight

modification has, however, substantial effect on the dependence structure in the model

(see Figure 4.4.7) and hence the conditional distribution of ht. To derive the latter

several reformulations of the model have been proposed (Jungbacker and Koopman,

2007 or Meyer and Yu, 2000), however we will use the treatment provided by Zucchini

et al. (2016, Section 20.2.3). These authors use the basic regression lemma for normal

variables to show that

ht|ht−1, yt−1, µ, φ, σ
2, ρ ∼ N

(
µ+ φ(ht−1 − µ) +

ρσyt−1

exp(ht−1/2)
, σ2(1− ρ2)

)
(4.4.23)

(Appendix 4.C provides the details of the derivation). Formulation (4.4.23) is particu-

larly convenient for “reusing” the derived integration scheme for the basic SV model,

as we only need to adjust the transition probabilities in the approximation to Ct.

Modifications to the HMM-based approximation The proposed HMM-based

approximation to SCDL can be easily adapted to allow for both extensions by simply

modifying the components of the matrices Γt, Pt and Qt specified in (4.3.2)–(4.3.4).

Notice that for the SVM model the dependence structure of the state is the same as

for the basic SV model, hence the core of the integration/imputation scheme remains

unchanged. What needs to be adjusted is the observation density, which can be done

in a straightforward manner. The modification for the SVL model requires adjusting

of the transition probabilities and the pdfs of the augmented states. Appendix (4.A.3)

10For this reason we also need to initialise the state vector one period later, i.e. at h1. This can be
easily understood from (4.4.23), where ht is conditioned on yt−1, among others.
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presents the required modifications for the largest model, allowing for both SV in the

mean and for the leverage effect (which we refer to as the SVML model).

ht−1 ht ht+1

yt−1 yt yt+1

Figure 4.4.7: SV model with leverage: modified dependence structure due to feedback from the logreturns yt−1 to
logvolatilities ht.

Application To illustrate the SCDA approach based on vertical integration we con-

sider daily log-returns of the IBM stock from 4th January 2000 to 29th December 2017

(4527 observations). The data are illustrated in Figure 4.4.8. We consider the basic

SV model as well as its extended version, i.e. the SVML model. For both models

we use adaptive intervals based on 10, 20 and 30 quantiles, while for the SV model

we also consider fixed bins based on 20 and 30 intervals. The reason for the latter is

that fixed bins turned out to be infeasible for the SVML model (if we want to keep a

reasonable number of bins, say below 50) while for the SV model we needed to specify

minimum 20 intervals to obtain stable results. For fixed bin we set the integration

range to ±4 (i.e. b0 = −4 and bB = 4). The obtained posterior means for the imputed

volatilities suggest that this choice was sufficient, as the estimated mean of the state

ranges roughly from −1 to 3 (Figure 4.4.9). For each model and method we simulate

50,000 draws after a burn-in of 10,000.
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Data descriptive statistics

T: 4527

Mean: 0.0130

Median: 0.0206

Min.: -16.8920

Max.: 11.3540

St. Dev.: 1.6302

Skewness: -0.1171

Kurtosis: 11.2089

Figure 4.4.8: SV model: IBM series, 4527 observations from 4th January 2000 to 29th December 2017.

Tables 4.4.4 and 4.4.5 present the parameter estimation results for the SV model

and SVML model, respectively. Tables 4.4.6 and 4.4.7 report the results for selected
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volatilities for SV and SVML, repetitively. We can see that for both models all the

methods deliver comparable posterior means and standard deviations of parameters

and standard deviations. A good agreement of the HMM-based schemes with the

benchmark DA approach demonstrates that the developed methods provide a close

approximation to the exact semi-complete data posterior. Interestingly, as few as 10

adaptive bins suffice to provide accurate estimates, which contrasts with minimum 50

fixed bins considered by Langrock et al. (2012b). This demonstrates the flexibility

of the adaptive bins used within the SCDA scheme. Figure 4.4.9 illustrates that the

estimates (posterior means) of the volatilities from the SV model obtained by the

methods considered are very close to each other.

Figure 4.4.9: SV model: posterior means for the imputed volatilities. For illustration, for the SCDA methods the
volatilities at odd time period are intrapolated between even time points.

Tables 4.4.4–4.4.7 further reveal that the proposed vertical integration scheme breaks

the strong dependence between subsequent states to achieve the desired improvement in

mixing. The ESS for model parameters obtained with the SCDA methods are typically

higher than for the full DA approach. The only exception is the β parameter of the

SVML for which all the methods exhibit excellent mixing with the DA approach slightly

outperforming the HMM-based approximations. This high efficiency in the estimations

of β is related to the presence of this parameter only in the observation equation hence

being less affected by the high autocorrelation of the state process. On the other hand,

the second extra parameter of the SVML model, i.e. the leverage parameter ρ, is hard

to estimate efficiently. For this parameter the SCDA turns out particularly useful in

improving the mixing with the corresponding ESS values being up to 4.5 higher than

for the benchmark DA. Figure 4.4.10 displays the ACF plots for the parameters for the

SV and SVML model, while Figure 4.4.11 for the selected volatilities. As suggested

by the ESS reported in Tables 4.4.4–4.4.7, in the majority of the cases we observe
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much quicker decays in the autocorrelations for the SCDA algorithm compared to the

“vanilla” DA approach.

Finally, we note however that the computing times are higher for the SCDA approaches,

with the computations for the adaptive case based on 10 bins taking roughly 17 times

and 7 times longer than for full DA for the basic SV model and the SVML model,

respectively. This suggests that the resulting gains in mixing may not necessarily

be worth the extra computational cost. However, given the very simple structure

of the basic SV model and not much more complex one of the SVML model, this

is hardly surprising. We expect the SCDA approach to be more beneficial for more

complex models, with even more involved dependence structure and relatively slower

computation time for the benchmark DA approach. This can be already partly seen

from shorter relative (to DA) computing times for the SCDA methods for the SVML

compared to these for the SV model. For instance, the proposed integration scheme

for the SV model could be particularly useful for a dynamic factor model with double

stochastic volatility (where both the observation and the factor disturbances are subject

to stochastic volatility). Due to the complex dependence structure as well matrix

computations involved, the standard DA can be expected to perform relatively poorly

and be time consuming to run. Then, there are several possibilities how to specify

the augmentation-integration scheme, e.g. to fully integrate one of the SV processes;

or interweave between every-second state of both SV processes (e.g. to integrate odd

states for one SV process and even states for another SV process). We leave these

extensions for further research as our current goal is to illustrate the generalisability of

the SCDA approach using the important “building block” of many econometric models.
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Method µ φ σ2

DA Mean 0.376 0.962 0.081

(Std) (0.115) (0.006) (0.011)

[111.83 s] ESS 3201.695 114.259 63.427

Adapt10 Mean 0.382 0.962 0.086

(Std) (0.116) (0.006) (0.013)

[1980.48 s] ESS 5398.200 249.402 135.917

Adapt20 Mean 0.379 0.961 0.085

(Std) (0.115) (0.006) (0.013)

[2290.29 s] ESS 5440.155 279.273 143.247

Adapt30 Mean 0.376 0.961 0.084

(Std) (0.115) (0.006) (0.012)

[2566.66 s] ESS 5784.093 120.823 60.656

Bin20 Mean 0.381 0.962 0.082

(Std) (0.116) (0.006) (0.012)

[1683.02 s] ESS 4504.012 239.698 147.409

Bin30 Mean 0.378 0.962 0.081

(Std) (0.115) (0.006) (0.012)

[2056.75 s] ESS 5484.200 301.272 167.720

ESS: at lag equal to the lowest order at which
sample autocorrelation is not significant.

Computing times (in seconds) in square brack-
ets.

Table 4.4.4: SV model: posterior means, standard deviations and effective sample sizes (ESS) of the model parameters
for M = 50, 000 posterior draws after a burn-in of 10, 000.
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Method µ φ σ2 β ρ

DA Mean 0.389 0.960 0.085 0.005 -0.286

(Std) (0.115) (0.006) (0.011) (0.009) (0.047)

[202.57 s] ESS 2510.153 119.283 49.404 7375.378 147.507

Adapt10 Mean 0.377 0.963 0.081 0.006 -0.289

(Std) (0.112) (0.006) (0.011) (0.009) (0.044)

[1511.49 s] ESS 5879.322 340.407 171.999 6969.391 681.943

Adapt20 Mean 0.375 0.961 0.084 0.006 -0.293

(Std) (0.115) (0.006) (0.012) (0.009) (0.045)

[2039.16 s] ESS 4835.772 432.012 187.508 6692.492 513.298

Adapt30 Mean 0.373 0.960 0.084 0.006 -0.292

(Std) (0.113) (0.006) (0.013) (0.009) (0.048)

[2497.22 s] ESS 5445.668 239.0242 149.680 7185.875 552.179

ESS: at lag equal to the lowest order at which sample autocorre-
lation is not significant.

Computing times (in seconds) in square brackets.

Table 4.4.5: SVML model: posterior means, standard deviations and effective sample sizes (ESS) of the model
parameters for M = 50, 000 posterior draws after a burn-in of 10, 000.
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Method h450 h950 h1450 h1950 h2450 h2950 h3450 h3950 h4450

DA Mean 0.974 0.259 -0.009 -0.006 0.257 1.083 0.011 0.733 -0.782

(Std) (0.444) (0.417) (0.404) (0.492) (0.466) (0.449) (0.485) (0.457) (0.454)

[111.83 s] ESS 458.198 487.795 573.470 301.690 394.748 501.153 300.990 376.820 428.370

Adapt10 Mean 1.002 0.213 0.0104 -0.051 0.243 1.064 -0.022 0.753 -0.781

(Std) (0.434) (0.431) (0.432) (0.492) (0.469) (0.445) (0.479) (0.453) (0.482)

[1980.48 s] ESS 1251.076 1489.877 1438.211 1245.904 1045.616 1509.202 1425.722 1338.145 1299.627

Adapt20 Mean 0.978 0.228 0.020 -0.040 0.241 1.059 -0.014 0.742 -0.805

(Std) (0.434) (0.447) (0.4358) (0.504) (0.467) (0.442) (0.489) (0.448) (0.467)

[2290.29 s] ESS 1666.989 1223.563 1435.324 1330.146 1285.580 1458.985 1157.446 1288.562 1402.586

Adapt30 Mean 0.961 0.225 0.014 -0.052 0.240 1.101 0.014 0.745 -0.782

(Std) (0.439) (0.438) (0.431) (0.499) (0.457) (0.442) (0.482) (0.436) (0.474)

[2566.66 s] ESS 1583.096 1638.283 1521.382 1270.313 1410.302 1607.990 1359.351 1457.938 1331.350

Bin20 Mean 0.979 0.207 0.018 -0.048 0.251 1.069 0.010 0.756 -0.808

(Std) (0.437) (0.428) (0.428) (0.490) (0.471) (0.441) (0.480) (0.448) (0.482)

[1683.02 s] ESS 1419.504 1243.523 1632.920 1223.331 1179.196 1455.774 1395.415 1217.547 1171.629

Bin30 Mean 0.961 0.228 0.008 -0.048 0.238 1.075 -0.011 0.731 -0.819

(Std) (0.424) (0.424) (0.428) (0.501) (0.464) (0.445) (0.4866) (0.4366) (0.4644)

[2056.75 s] ESS 1152.304 1759.833 1366.974 1150.885 1395.970 1422.304 1292.074 1222.696 1539.078

ESS: at lag equal to the lowest order at which sample autocorrelation is not significant.

Computing times (in seconds) in square brackets.

Table 4.4.6: SV model: posterior means, standard deviations and effective sample sizes (ESS) of the latent volatilities
for M = 50, 000 posterior draws after a burn-in of 10, 000.

Method h450 h950 h1450 h1950 h2450 h2950 h3450 h3950 h4450

DA Mean 0.961 0.478 -0.163 0.011 0.448 1.026 -0.010 0.659 -0.963

(Std) (0.429) (0.405) (0.449) (0.517) (0.407) (0.439) (0.479) (0.431) (0.506)

[202.57 s] ESS 650.696 420.645 540.354 276.558 621.079 633.797 506.926 348.977 346.512

Adapt10 Mean 0.955 0.454 -0.198 -0.022 0.413 1.024 -0.004 0.682 -0.984

(Std) (0.416) (0.402) (0.423) (0.481) (0.408) (0.408) (0.435) (0.447) (0.468)

[1511.49 s] ESS 1550.904 1192.579 1183.693 1199.115 1548.657 1860.399 1277.721 1139.830 1089.324

Adapt20 Mean 0.920 0.470 -0.127 0.008 0.419 1.016 -0.055 0.677 -0.929

(Std) (0.400) (0.405) (0.450) (0.489) (0.4190) (0.421) (0.463) (0.435) (0.493)

[2039.16 s] ESS 1708.410 1280.039 1152.046 1008.572 1493.396 1621.910 1352.884 1231.148 970.933

Adapt30 Mean 0.915 0.409 -0.136 -0.034 0.402 1.030 -0.053 0.697 -0.948

(Std) (0.404) (0.398) (0.439) (0.486) (0.403) (0.430) (0.438) (0.451) (0.483)

[2497.22 s] ESS 1860.153 1333.922 1846.106 1226.611 1486.479 1549.930 1353.398 1322.118 1205.346

ESS: at lag equal to the lowest order at which sample autocorrelation is not significant.

Computing times (in seconds) in square brackets.

Table 4.4.7: SVML model: posterior means, standard deviations and effective sample sizes (ESS) of the latent
volatilities for M = 50, 000 posterior draws after a burn-in of 10, 000.
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(a) SV model.

(b) SVML model

Figure 4.4.10: SV and SVML model: ACF plots for parameters.
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(a) SV model.

(b) SVML model

Figure 4.4.11: SV and SVML model: ACF plots for selected volatilities.
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4.5 Discussion

We have presented a new estimation method for state space models, called Semi-

Complete Data Augmentation, designed to increase the efficiency of “vanilla” MCMC

algorithms. The main idea behind the introduced approach is to combine data aug-

mentation with numerical integration, where the latter aims at reducing the depen-

dence between the imputed auxiliary variables. This concept relates to general Rao-

Blackwellisation methods, however we do not require the resulting conditional distri-

bution (given the imputed states) to be available in a closed-form (i.e. to be analyti-

cally integrable), nor the imputed auxiliary variables to be sufficient statistics for the

marginalised variables.

We propose integration schemes based on the insights from hidden Markov models

in the sense that we specify new transition probabilities between redefined states, to

be numerically integrated out, conditionally on the auxiliary variables. Further effi-

ciency gains can be obtained by “binning”, i.e. approximating similar values of the

marginalised state with e.g. a single mid-value. This results in an approximation to

the semi-complete data likelihood and we note that for continuous states such an ap-

proximation is a natural starting point for our approach (as in principle for any MC

based analysis). We describe two types of “binning”: “fixed bins” based a pre-specified

grid and “adaptive bins” based on e.g. quantiles of the relevant distribution. The lat-

ter remove the problem of specifying the “essential domain” required for fixed bins,

considered by e.g. Kitagawa (1987) and Langrock et al. (2012b). Adaptive bins are

also more suited for problems with highly varying integration ranges such as in the SV

model with leverage and SV in the mean (SVML), for which fixed bins are unlikely to

be efficient (see Sandmann and Koopman, 1998). Moreover, a specific approximation

accuracy typically can be achieved by using fewer adaptive bins than fixed bins, which

– given similar computing times for both approaches based on the same number of

bins – means the adaptive bins require less computing time to attain an appropriate

precision.

The two empirical studies considered demonstrate the gains from applying the SCDA

approach compared to the general “vanilla” MCMC algorithm. For the lapwings data

model the efficiency gains are substantial, not only in terms of higher effective sample

sizes compared to the standard DA technique but also when taking into account the

computing time (ESS/sec.). For the SV and SVML models, SCDA boosts the mixing of

the Markov chains, however at the cost of an increased computing time. Nevertheless,

for larger models with more complex dependency structure, such as a dynamic factor
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model with double stochastic volatility, the proposed SCDA method is likely to become

much more profitable – also in terms of increased ESS/sec – as discussed in Section

4.4.2. We leave these extensions for further research, focusing in the current work on

illustrating the generalisability of the SCDA algorithm with the important “building

block” of numerous (econometric) models.

The split of the latent states into “auxiliary” and “integrated” variables is model-

dependent and should be specified in such a way that the algorithm is efficient. This

is a non-unique choice and multiple approaches may be applied – the efficiency of

these will be dependent on both the model and data. On the one hand, the imputed

states aim to have reduced correlation, to improve mixing of MCMC algorithms; on

the other hand, the numerical integration is over a very low number of dimensions,

which in many cases is feasible due to conditional independence of the integration

problems. To identify such conditionally independent latent states investigating of

the underlying graphical structure of an SSM can be useful (cf. the concept of d-

separation in Bayesian Networks). In general, high dimensional integration remains a

challenging problem, which we leave for further research, noting that insights from the

SMC samplers (Del Moral et al., 2006) could be useful in this context.

The proposed methodology naturally leads to several topics for further research. First,

we aim to investigate error bounds due to using approximate approach. This should

allow us to quantify the demonstrated higher usefulness of adaptive bins compared to

fixed bins. Second, making use of automated methods for identifying correlation struc-

ture would make applying of the SCDA approach to new models easier and potentially

more efficient. The latter can be the case if the model at hand is complex and/or there

are no “natural candidates” for the ingratiated states. Finally, we expect the increased

computing time recorded for the SV-type models to be reduced through parallelisa-

tion methods. Since updating a given state is associated with conditioning on only

two other states, the previous one and the next one (see Figure 4.4.6), it is possible

to update every second augmented state in parallel. In principle, such an approach

could be also adopted in the lapwings application, however there only every fourth

state updating could be used due to the second-order dependence in the associated

HMM-representation.
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Appendix 4.A Specification details of the HMM ap-

proximations

In this section we present how the general formulation of the HMM-based approxi-

mation to the SCDL can be applied for the examples discussed in Sections 4.3 and

2.2.

4.A.1 Motivating example from Section 4.3.2

The SSM from Figure 4.3.1 is given by

yt|x1,t, x2,t ∼ p(x1,t, x2,t),

x1,t+1|x1,t, x2,t ∼ p(x1,t, x2,t),

x2,t+1|x1,t, x2,t ∼ p(x1,t, x2,t),

xi,0 ∼ p(xi,0), i = 1, 2

and we aim at imputing x1,t and integrating out x2,t. Since in this model Tint = Taug =

{0, 1, . . . , T}, so that the index functions τ(t), a(t) and o(t) are simply identities, we

skip them below to simplify the exposition. The marginal distribution11 of the imputed

state x1,t can be approximated as

p(x1,t|x1,0:t−1) ≈
B∑
j=1

P(x2,t−1 ∈ Bj|x1,0:t−1)p(x1,t|x1,0:t−1, x2,t−1 ∈ Bj),

=
B∑
j=1

P(x2,t−1 ∈ Bj|x1,0:t−2)︸ ︷︷ ︸
=:uj,t−1

p(xj,t|x1,t−1, x2,t−1 ∈ Bj)︸ ︷︷ ︸
=:pj,t

, (4.A.1)

where pj,t is the likelihood of the augmented state at t given the imputed state at t− 1

was in the jth bin (and previous realisations of xaug but these are treated as known)

and uj,t−1 is the unconditional probability of the hidden process x2,t falling into the jth

bin at t− 1. This unconditional probability can be expressed as

uk,t = P(x2,t ∈ Bk|x1,0:t−1) =
B∑
l=j

P(x2,t−1 ∈ Bj|x1,0:t−2)︸ ︷︷ ︸
=uj,t−1

P(x2,t ∈ Bk|x1,0:t−1, x2,t−1 ∈ Bj)︸ ︷︷ ︸
=:γjk,t

,

(4.A.2)

11Marginal in the sense of the Markov structure, not the augmented states which we treat as known.
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which leads us to the standard result in HMM that the unconditional distributions in

subsequent periods are related via the transition matrix Γt = [γjk,t]k,j=1,...,T as follows

(see Zucchini et al., 2016, p.16, 32)

ut = ut−1Γt.

Next, the observations are conditionally independent, hence we have

p(yt|x1,0:t) ≈
B∑
k=1

uk,t p(yt|x1,t, x2,t ∈ Bk)︸ ︷︷ ︸
=:qk,t

, (4.A.3)

with qk,t denoting the likelihood of the observation at t given the hidden state in the

same period t falling into bin k.

Comparing (4.A.2) and (4.A.3) shows that the distributions of the same period t

augmented states and “real” observations are conditioned on the latent states from

different periods, i.e. t − 1 and t, respectively. This is a consequence of the general

dependence structure in SSMs. The transition matrix at t captures this change of the

underlying state so that combining of all there parts (4.A.1), (4.A.2) and (4.A.3) results

in

p(yt, x1,t|x1,0:t−1) ≈
B∑
j=1

B∑
k=1

uj,t−1pj,tγjk,tqk,t.

To compute the HMM-based approximation to the SCDL we consider forward prob-

abilities fαt of the imputed states x1,t and observations yt (see Zucchini et al., 2016,

Sec. 2.3.2) defined as

αt = p(x1,0)u0

t∏
s=1

PsΓsQs, t = 1, 2, . . . T,

α0 = p(x1,0)u0Q0,

with u0 =
[
P(x2,0 ∈ B1) . . . P(x2,0 ∈ BB)

]
being the initial distribution of the latent

state and Q0 = I. It follows from this definition that the forward probabilities can be

expressed recursively as

αt = αt−1PtΓtQt
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so that the required approximation to the SCDL being given by

p̂B(y,x1) = p(x1,0)u0αtI.

Notice that the transition matrix Γt is a full matrix, however in some cases, e.g. the

lapwing population model, the transition matrix can take a simpler form e.g. it is

“column-wise constant”: γlk,t = P(x2,t = k|x1,0:t−1), ∀l (each row is the same). On the

other hand, the augmented observation matrix and the “real” observation matrix have

a diagonal forms Pt = diag (pj,t)j=1,...,B and Qt = diag (qk,y)j=k,...,B, respectively. Using

the notation introduced in Section 4.3.2 we can write

p̂B(y,x1) = p(x1,0)u0Q0

T ∗∏
t=1

(
Pτ(t)Γτ(t)Qτ(t)

)
1.

We can verify the above results be explicitly calculating

PtΓtQt =

p1,t 0 0

0
. . . 0

0 0 pB,t


γ11,t . . . γ1B,t

...
. . .

...

γB1,t . . . γBB,t


q11,t 0 0

0
. . . 0

0 0 qBB,t



=

 p1γ11,t . . . p1γ1B,t

...
. . .

...

pBγB1,t . . . pBγBB,t


q1,t 0 0

0
. . . 0

0 0 qB,t

 ,

αt−1PtΓtQt1 =
[
α1,t−1 . . . αB,t−1

] p1γ11,tq1,t . . . p1γ1B,tqB,t
...

. . .
...

pBγB1,tq1,t . . . pBγBB,tqB,t


1

...

1



=


B∑
j=1

αl,t−1pjγj1,tq11,t︸ ︷︷ ︸
=α1,t

. . .

B∑
j=1

αl,t−1pjγjB,tqB,t︸ ︷︷ ︸
=αB,t


1

...

1

 = αt1

and expressing

p̂B(y,x1) =
B∑
k1

· · ·
B∑
kT

p(x1,0)u0

T∏
t=1

pkt−1,tγkt−1kt,tqkt,t.
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4.A.2 Lapwing population model

The approximation for the lapwings model is a special case of scheme used for the

general model discussed in the Section 4.A.1, with the transition matrix Γt having

equal rows. The hidden Markov chain is here given as {zt} = {N1,t} for t = 0, . . . , T

and we again set Tint = Taug = {0, 1, . . . , T}, so that the index functions τ(t), a(t) and

o(t) are simply identities, The transition matrix has the form

Γt =

P(N1,t = b∗1|N1,t−1 = b∗1,Na,0:t−1) . . . P(N1,t = b∗B|N1,t−1 = b∗1,Na,0:t−1)
...

. . .
...

P(N1,t = b∗1|N1,t−1 = b∗B,Na,0:t−1) . . . P(N1,t = b∗B|N1,t−1 = b∗B,Na,0:t−1)



=

P(N1,t = b∗1|Na,t−1) . . . P(N1,t = b∗B|Na,t−1)
...

. . .
...

P(N1,t = b∗1|Na,t−1) . . . P(N1,t = b∗B|Na,t−1)

 ,
with b∗k = k, for k = 0, . . . , N∗. We can see that for each column of Γt its elements are

the same. For the augmented observation matrix Pt we have

Pt = diag
(
p(Na,t|Na,0:t−1, N1,t−1 = b∗j)

)
j=1,...,B

,

so Pt and Γt condition on the same hidden state. The observation matrix has a simple

form

Qt = p(yt|Na,t)I.

Inserting Qt, Pt and Qt in (4.3.6) leads to

p̂B(y,Na) = p(h0)u0Q0

T ∗∏
t=1

PtΓtQt1, (4.A.4)

where u0 =
[
P(N1,0 ∈ Bk) . . . P(N1,0 ∈ BB)

]
and Q0 = I. Then (4.A.4) is an HMM-

based approximation to (4.4.8) converging to its true value in B →∞ and bB →∞.
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4.A.3 SV model

Basic SV model The SCDL for the basic SV model can be expressed as

p(y,h2T|θ) =p(h0)

∫
p(h1|h0)p(y1|h0)

T ∗∏
t=1

p(h2t+1|h2t)p(y2t+1|h2t+1)p(h2t|h2t−1)p(y2t|h2t) dh1 . . . dhT ∗ ,

(4.A.5)

where T ∗ = T−1
2

(we assume T being odd). Since we impute volatilities at even time

periods the Markov chain is given by {zt} = {h2t+1} for t = 1, . . . , T ∗ and its transition

matrix has the form

Γt =

P(h2t+1 ∈ B1|h2t−1 ∈ B1, h2t) . . . P(h2t+1 ∈ BB|h2t−1 ∈ B1, h2t)
...

. . .
...

P(h2t+1 ∈ B1|h2t−1 ∈ BB, h2t) . . . P(h2t+1 ∈ BB|h2t−1 ∈ BB, h2t)



=

P(h2t+1 ∈ B1|h2t) . . . P(h2t+1 ∈ BB|h2t)
...

. . .
...

P(h2t+1 ∈ B1|h2t) . . . P(h2t+1 ∈ BB|h2t)

 .
We can see that the rows of Γt are the same, which means that the hidden states are

conditionally independent given the imputed states. For the augmented observation

matrix Pt we have

Pt = diag (p(h2t|h2t−1 ∈ Bj))j=1,...,B ,

so Pt and Γt condition on the same hidden state. The observation matrix has the form

Qt = diag (p(y2t, y2t+1|h2t+1 ∈ Bj, h2t))j=1,...,B .

Inserting Qt, Pt and Qt in (4.3.6) with τ(t) = 2t+ 1, a(t) = 2t and o(t) = {2t, 2t+ 1}
leads to

p̂B(y,h2T) = p(h0)u0Q0

T ∗∏
t=1

PtΓtQt1, (4.A.6)

where u0 =
[
P(h1 ∈ Bk|h0) . . . P(h1 ∈ BB|h0)

]
and Q0 = diag (y1|h1 ∈ Bk)k=1,...,B.

Then (4.A.6) is an HMM-based approximation to (4.A.5) converging to its true value

in B →∞ and b0 → −∞, bB →∞.
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SVML model For the SVML model we only need to adjust the matrices Pt and Qt

as the dependence structure of the observations remains unchanged

Γt =

P(h2t+1 ∈ B1|h2t, y2t) . . . P(h2t+1 ∈ BB|h2t, y2t)
...

. . .
...

P(h2t+1 ∈ B1|h2t, y2t) . . . P(h2t+1 ∈ BB|h2t, y2t)

 ,
Pt = diag (p(h2t|h2t−1 ∈ Bj, y2t−1))j=1,...,B .

Appendix 4.B Lapwings dataset

The lapwings dataset plays an important role in statistical ecology and has served as

an illustration in several handbooks (see King, 2011; King et al., 2010) and papers

(e.g. Besbeas et al., 2002) in this field. It was also used as an example of a complex

statistical model by e.g. Goudie et al. (2018). One of the main reasons for such a

particular interest in this species is a sharp decline in its population in recent years:

its European population is considered as near threatened by International Union for

Conservation of Nature (2018), while in Britain in particular it has been moved to the

red list of species of conservation concern, see The Royal Society for the Protection

of Birds (2018) (i.e. of the highest conservation priority, with species needing urgent

action) from the amber list (mentioned by previous literature, see Besbeas et al., 2002;

Brooks et al., 2004). The state of its population is crucial as it serves as an indicator

species for other farmland birds, giving us an insight into the dynamics of similar bird

species.

We follow the approach of Besbeas et al. (2002) and use three datasets for the lapwings

application: the count census data for the population index, the weather data on the

number of frost days, and the ring-recovery data. Combining independent sources of

data underlies the integrated population modelling (IPM) framework and allows for a

more precise parameter estimation. This is due to the survival parameters αi, βi, i ∈ 1, a

being common to the state space model for the census data and to the ring-recovery

model

Census data The census data are derived from the Common Birds Census (CBC)

of the British Trust for Ornithology, which recently has been replaced by the Breeding

Bird Survey. The dataset is constructed as annual estimates of the number of breeding

female lapwings based on annual counts made at a number of sites around the UK.
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Since only a small fraction of sites are surveyed each year, the index can be seen as a

proxy for the total population size. For comparability, we use the same time span as

Brooks et al. (2004) and King (2011), i.e. from 1965 to 1998. The choice of the starting

year is there motivated by the fact that in earlier years the index protocol was being

standardised. Finally we note that year 1965 is associated with time index t = 3, for

consistency with the ring-recovery data (to be discussed below) which start in 1963.

Weather data For bird species there is a natural relationship between the survival

probabilities and the weather conditions, most importantly winter severity. Following

Besbeas et al. (2002) we measure this factor for year t by the number of days between

April of year t and March of year (t+ 1) inclusive in which the temperature in Central

England fell below freezing and denote it by fdayst. We further normalise fdayst

to obtain ft which we use as a regressor in the logistic regression for the survival

probabilities. As noted by King (2011), normalisation of covariates is done to improve

the mixing of the sampling scheme and to facilitate the interpretation of the parameters

of the logistic regression (intercept and slope).

Ring–recovery data Ring–recovery studies aim at estimating demographic param-

eters of the population under consideration including first-year survival probabilities,

adult survival probabilities and mortality probabilities (referred to as ‘recovery’ proba-

bilities). These studies consist in marking individuals (e.g. with a ring or a tag) at the

beginning of period t and then releasing them. In subsequent periods t + 1, t + 2, . . .

the number of dead animals is recorded, where it is assumed that any recovery of a

dead animal is immediate. For lapwings, the ringed birds are chicks (“fist-years”) and

a “period” corresponds to a “bird year” i.e. 12 months from April to March. We

analyse the ring-recovery data for the releases from 1963 to 1997, with the recoveries

up to 1998.

Ring-recovery data are stored in an array, an example of which is provided in Table

4.B.1. The first column corresponds to the number of ringed animals in a given year

Rt, t = 1, . . . , T , and the subsequent columns report the number of recovered rings mt,s

(i.e. animals found dead) in each following year s, s = 1, . . . , S. Obviously, mt,s = 0

for t > s. Finally, there is an additional (S + 1)th column, with the entries mt,S+1

providing the number of individuals ringed in year t but never seen again (their rings

are not recovered), mt,S+1 = Rt −
∑S

s=1mt,s.

The parameters of interest are φ1,s, φa,s and λs. The former two are the conditional

probabilities of survival until year s+ 1 of a first-year and an adult, respectively, given
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LEVERAGE

Year of Ringing Number Ringed
Year of Recovery

1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974
1963 1147 14 4 1 2 1 0 1 1 0 0 0
1964 1285 20 3 4 0 1 1 0 0 0 0
1965 1106 10 1 2 2 0 2 2 1 1
1966 1615 9 7 4 2 1 1 0 0
1967 1618 12 1 6 2 0 0 1
1968 2120 9 6 4 0 2 2
1969 2003 10 8 5 3 1
1970 1963 8 3 2 0
1971 2463 4 1 1
1972 3092 7 2
1973 3442 15

Table 4.B.1: A fragment of Ring-Recovery Data for lapwings for the years 1963-1973, table from King (2011).

such an individual is alive in year s. The latter one is the conditional probability of ring

recovery in year s given an individual dies in year s. Let v = {vs}S−1
s=1 denote a vector

of a variable vs ∈ {φ1,s, φa,s, λs}. Then each row mt of the m-array is multinomially

distributed: mt ∼MN (Ri,qi) (MN denotes the multinomial distribution), where qi

are the multinomial cell probabilities specified for s = 1, . . . , S as12

qt,s =


0, t > s,

(1− φ1,t)λs t = s,

φ1,tλs(1− φa,s−1)
∏j−2

k=1 φa,k, t > s

ans for s = S + 1 as qt,s = 1−
∑S

s=1 qt,s.

The likelihood of the m-array is then given by

p(fm|φ1, φa, λ) ∝
T∏
t=1

S+1∏
s=1

q
mt,s
t,s .

The array m = [mt,s]
s=1,...,S+1
t=1,...,T is a sufficient statistic for ring-recovery data.

Appendix 4.C Conditional state distribution for the

SV model with leverage

Following Zucchini et al. (2016), we aim at deriving the conditional distribution of ht+1

given θ, ht and yt. Below, we skip θ in the conditioning to simplify notation. Since

12For j − 2 < t we put
∏j−2
k=1:=1.
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yt = exp(ht/2)εt, after demeaning (by µ+φ(ht−µ)), this is the distribution of ηt given

ht and εt.

The distribution of ηt|εt can be obtained using the basic result from multivariate normal

regression, which we recall below for convenience:[
x

y

]
∼ N

([
µx

µy

]
,

[
σ2
x σxy

σxy σ2
y

])
⇒ x|y ∼ N

(
µx +

σxy
σ2
y

(y − µy), σ2
x −

σ2
xy

σ2
y

)
.

Hence, we obtain

ηt|εt ∼ N
(

0 +
ρσ

1
(y − 0), σ2 − ρ2σ2

1

)
= N (ρσεt, σ

2(1− ρ2))

so that

ht+1|ht, εt ∼ N
(
µ+ ρ(ht − µ) + ρσεt, σ

2(1− ρ2)
)
.

Finally, we can express the latter in terms of the actual observation yt rather than the

unobserved disturbance εt. For the basic SV model this becomes

ht+1|ht, εt ∼ N
(
µ+ ρ(ht − µ) + ρσ

yt
exp(ht/2)

, σ2(1− ρ2)

)
,

which is the result reported in Section 4.4.2, while for the SVM we have

ht+1|ht, εt ∼ N
(
µ+ ρ(ht − µ) + ρσ

yt − β exp(ht)

exp(ht/2)
, σ2(1− ρ2)

)
.
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Chapter 5

Forecast Density Combinations of

Dynamic Models and Data Driven

Portfolio Strategies

The problem of asset allocation has long been an area of intense interest for both

investment practitioners and academics. A well established approach to portfolio con-

struction relies on the series of seminal papers by Fama and French (Fama and French,

1992, 1993, 2015). The traditional factor models proposed by them rely on macro or

firm specific factors to explain expected pay-offs of financial assets. More complex fac-

tor models have also been broadly used, e.g. the dynamic factor model with stochastic

volatility of Aguilar and West (2000). However, return forecasts from (static or dy-

namic) models do not directly lead to a practical policy tool for investors, i.e. to a

decision which portfolio strategy to follow. A standard practice in portfolio manage-

ment is based on realised returns from different portfolio strategies so that the best

performing one is selected. Such an approach is thus not backed by any modelling rigour

and obviously cannot provide any uncertainty quantification. It would be preferable,

therefore, to incorporate a particular portfolio strategy in the modelling framework.

However, this typically requires a specific model-based strategy such as mean-variance

optimization, see e.g. Winkler and Barry (1975), and a specific utility function for the

investor, see e.g. Aguilar and West (2000). We propose to overcome these shortcomings

by directly connecting forecasts from an “appropriately specified set of models” with a

set of “data-driven portfolio strategies”, without the need to specify a separate scoring

function like a utility or loss function. We note that data-driven portfolio strategies

have also been analysed by Garlappi et al. (2006) and DeMiguel et al. (2007), yet our
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approach differs from theirs as we aim at considering sets of models as well as strategies.

To specify the above-mentioned “appropriate set of models”, we start with a scrupu-

lous investigation of typical stylised facts of the time series of monthly returns of 10

US industries over the period 1926M7–2015M6. The findings of this analysis allow us

to define a general class of models, with different short and long-run dynamics, which

extends the factor-augmented vector autoregressive model of Bernanke et al. (2005).

The “data-driven portfolio strategies” refer to the basic practice in financial invest-

ment that one invests in the “winner” industry and goes short in the “loser” industry,

corresponding to the industries with the highest and lowest cumulative returns in past

periods. I.e. one aims to take advantage of a positive or a negative “momentum” in

returns of particular industries. Combining of models and strategies in a single mod-

elling framework is achieved by using a mixture of alternative models and alternative

portfolio strategies, which we represent in probabilistic terms as a density combination

of model forecasts and strategy returns. The combination weights are defined through

feedback mechanisms that enable learning, to allow for cross-correlation and correla-

tion over time. Our approach can be seen as an extension of the mixture of experts

analysis of Jacobs et al. (1991); Jordan and Jacobs (1994); Jordan and Xu (1995); Peng

et al. (1996). Further, we allow for model and strategy incompleteness. This enables

us to study misspecification effects through diagnostic analysis of economic results and

posterior residuals. This, to the best of our knowledge, novel methodology provides

dynamic asset-allocations using a learning period for optimal weights at every decision

period.

The proposed Forecast Density Combination (FDC) scheme generalised the approach

of Billio et al. (2013) by including sets of model forecasts and strategy returns. This,

together with a fully Bayesian inference over the resulting model, allows us for the

quantification of uncertainty from multiple sources, which is important from a risk

management perspective. In other words, our approach supplies an investor with policy

recommendations about different portfolio scenarios in which the returns uncertainty is

explicitly incorporated. Hence, an investor has full information about his/her portfolio,

including e.g. the Value-at-Risk estimates, which is not provided by merely standard

point forecasts.

Bayesian inference over the proposed FDC model is based on its representation as

a nonlinear non-Gaussian state space model. The complexity of the system under

consideration brings a challenge in terms of estimation efficiency and robustness as well

as the amount of computing time, particularly in the case of a large number of models

and strategies. To overcome these difficulties, we introduce a novel nonlinear, non-
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Gaussian filter called MFilter, which is embedded in the density combination procedure.

MFilter is based on mixtures of Student’s t distribution obtained with the MitISEM

algorithm proposed by Hoogerheide et al. (2012) and further developed in Baştürk

et al. (2016) and Baştürk et al. (2017).

To validate the practical usefulness of the developed FDC method, we investigate its

performance using the data on 10 US industry returns over the period 1926M7–2015M6.

We draw three main conclusions. First, we obtain evidence that averaging over den-

sity combinations of sets of model forecasts and strategy returns pays off in terms of

expected return and risk features. Forecasts from model sets help to improve expected

return while incorporating strategy sets in forecasting helps to reduce risk features.

Basic model structures and strategies with fixed weights perform worse in terms of

expected return and Sharpe ratio. Second, we demonstrate that the dynamic patterns

of the weights in these combinations differ in tranquil and more volatile periods. For

this reason, even basic learning mechanisms adopted for the weight estimation should

be useful for obtaining a portfolio bespoke to the current market trends. Third, there

exist adverse effects of misspecification of the model and strategy set on the results.

Diagnostic learning based on the posterior residual patterns as well as on the related

economic implications can lead to improved modelling and policy making. We em-

phasize that our empirical results are conditional upon the employed information set

which consists of the dataset and the selected model and strategy sets. The results of

our empirical analysis contain informative signals about the scenarios resulting from

alternative portfolio policies, which can be useful for practitioners such as investment

companies.

The remainder of this chapter is organised as follows. In Section 5.1 we first discuss

stylised facts about 10 US industry returns. This naturally leads us to the specification

of the general dynamic model capturing these features. Section 5.2 introduces the

concept of data-driven portfolio strategies and discusses several potential choices of

such strategies. We then describe in Section 5.3 how to combine strategy returns with

model forecasts in the extended FDC scheme and we introduce the computational tool

for its inference (MFilter). Section 5.4 illustrates the usefulness the developed FDC

method based on an empirical application to 10 US industry returns. Section 5.5

concludes with a discussion. We provide additional results in Appendices 5.A–5.D.
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5.1 Modelling of US industry returns based on stylised

facts

Traditional factor models rely on macro or firm specific factors to explain expected

pay-offs of financial assets, see Fama and French (1992, 1993, 2015). However, several

stylised facts about asset returns which we discuss in detail below, such as a stationary

auto-regressive pattern, strong time-varying cross-sectional correlations between series

and volatility clustering, suggest that these traditional non-dynamic models may not

be flexible enough to accurately explain the data. Therefore, various specifications of

dynamic factor models (DFMs) have been proposed in the literature. Allowing for

different long and short-run dynamics of returns, the DFMs have been shown useful in

capturing some properties of return series, see Ng et al. (1992), Quintana et al. (1995),

Aguilar and West (2000) and Han (2006), among several others. The basic specifica-

tion of a DFM has been later incorporated in the vector autoregressive model (VAR)

framework to form a class of factor-augmented VAR model (FAVAR), see Bernanke

et al. (2005) and Stock and Watson (2005). FAVAR have been applied for portfolio

construction in e.g. Aguilar and West (2000), Talih and Hengartner (2005), Engle and

Colacito (2006), Carvalho et al. (2011) and Zhou et al. (2014).

To specify a more convenient and flexible model structure, we first carry out a care-

ful analysis of the time series of monthly returns of 10 US industries over the period

1926M7–2015M6, which amounts to 1069 observations on the vector of returns1. Fig-

ure 5.1.1a illustrates monthly returns of 10 industries, where the industries are abbrevi-

ated as follows: “NoDur” for consumer non-durables, “Durbl” for consumer durables,

“Manuf” for manufacturing, “Enrgy” for oil, gas, and coal extraction and products,

“HiTec” for business equipment, “Telcm” for telephone and television transmission,

“Shops” for wholesale, retail, and some services, “Hlth” for health care, medical equip-

ment, and drugs, “Utils” for utilities, “Other” for other industries. Next, 45 pairwise

correlations of the 10 industry returns are presented in Figure 5.1.1b, while 4 principal

components are shown in Figure 5.1.1c. We compute both pairwise correlations and

principal components based on moving windows with 240 monthly observations. For

the initialisation, we use the first 50 observations as the initial sample (so that the first

correlations are computed for the returns over the period 1926M7–1930M8), which we

then expand until observation 240 (1946M6).

1The industry returns are constructed by equally weighting all the stock returns in a specific
industry, which is similar to Moskowitz and Grinblatt (1999). The data are retrieved from
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french on 24/10/2015.
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Figure 5.1.1: Features of 10 US industry portfolios 1926M7–2015M6.
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Figures 5.1.1a–5.1.1c imply at least four stylised facts. In the top figure, all the return

series exhibit a stationary autoregressive pattern and clear volatility clustering. Strong

cross-sectional correlations between the returns are visible in the middle figure, with

correlations being heavily time-varying. The bottom figure indicates that the total

variation in the series is well captured with as few as one to four principal components.

However, there is a time-varying pattern in the percentage of explained variation.

Given these typical data features, we consider several dynamic models with distinct

short and long-run dynamics and allow for disturbance distributions. All the models

considered in our analysis are members, or combinations of members, of the FAVAR

class extended to include stochastic volatility (SV) of the idiosyncratic disturbances

(FAVAR-SV) and can be expressed in the following form

yt = βxt + Λft + εt, εt ∼ N (0,Σt),

ft = φ1ft−1 + · · ·+ φLft−L + ηt, ηt ∼ N (0,Q),
(5.1.1)

where the dependent variable yt = (y1,t, . . . , yN,t)
′ is the N × 1 vector of industrial

portfolio returns, with yi,t denoting the return from industry i at time t, and the

time series runs from t = 1, . . . , T . The C × 1 vector of predetermined variables xt

may contain explanatory variables as well as lagged dependent variables. The K × 1

vector ft contains unobservable factors, where φj for j = 1, . . . L is a K ×K matrix of

autoregressive coefficients at lag j. Λ is an N×K matrix of factor loadings. In addition,

we define a time-varying variance-covariance matrix for the idiosyncratic disturbances,

Σt, and a fixed covariance matrix for the factor disturbances, Q. In all specifications

Σt is a diagonal matrix2.

Different short and long-run dynamic behaviour of member models of the FAVAR-

SV class is obtained by specifying different assumptions regarding the predetermined

variables xt, the factor structure ft, the idiosyncratic disturbances and the factor

disturbances. The basic DFM assumes β = 0(N×C), a normal distribution for the

idiosyncratic disturbances and the factor disturbances with time-invariant variance-

covariance matrices. Another basic model is the VAR model, which is obtained by

letting Λ = 0(N×K), defining xt as the lagged dependent variable and a time-invariant

variance-covariance matrix of the disturbances. The standard SV model results from

setting β = 0 and Λ = 0. We provide more details on the model specification in Ap-

2We have also estimated models with a Student’s t distribution and/or a time varying covariance
matrix, Qt. Both extensions led to overfitting and poor empirical and forecasting results. We have
therefore skipped these models in our final analysis. Particularly for the latter case, we acknowledge
that the MCMC sampler can be improved, see Kastner et al. (2017).
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pendix 5.A together with the corresponding prior specification and Bayesian estimation

procedures.

In our empirical analysis in Section 5.4, we compare the performance of alternative

combinations of models for forecasting and portfolio analysis. We start with exploring

the contribution of each of the three basic models (DFM, VAR and SV) separately as

well as in combination. As the next step, we investigate combinations of more flexible

models, DFM-SV and VAR-SV. Finally, the general FAVAR-SV class is investigated.

As a final remark we emphasise that the general model (5.1.1) is not identified without

further parameter restrictions due to both the factors ft and the loading matrix Λ being

unknown. This can be seen by expressing the factor part of the observation process in

(5.1.1) as

ftΛ = ftRR−1Λ,

in which the left hand side and the right hand side are observationally equivalent for

any K × K invertible matrix R. Such a matrix R has K2 free parameters hence at

least K2 restrictions are needed for the model to be identified, see Geweke and Zhou

(1996), Lopes and West (2004), Bai and Peng (2015) and Frühwirth-Schnatter and

Lopes (2018). For all the models we consider, we follow the identification scheme of

Lopes and West (2004) and assume diagonal covariance matrices. We refer to Chan

et al. (2018) and Kaufmann and Schumacher (2017) for more recent treatment of

identification for this class of models.

5.2 Data-driven portfolio strategies

The dynamic models specified in Section 5.1 provide a flexible and useful tool for de-

scribing and forecasting financial returns. However, as pointed out in the introduction,

such forecasts do not directly lead to a practical policy tool for investors, i.e. to a deci-

sion which portfolio strategy to follow. Below we discuss how model-based predictions

can be directly connected with portfolio strategies. We focus on data-driven portfolio

strategies which have an advantage of not depending on a particular scoring function,

such as a utility or loss function. We note that data-driven portfolio strategies have also

been analysed by Garlappi et al. (2006) and DeMiguel et al. (2007), yet our approach

differs from theirs as we consider sets of models as well as strategies.
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Standard momentum As a benchmark data-driven portfolio strategy, we consider

the so-called standard industry momentum (SM), discussed e.g. by Jegadeesh and

Titman (1993), Chan et al. (1996) and Jegadeesh and Titman (2001). It is not based

on any model structure but directly makes use of typical momentum patterns in a

return time series. The practice is that one invests in the “winner” industry and

goes short in the “loser” industry, which correspond to the industries with the highest

and lowest cumulative returns in, say, the past 12 periods. The selected momentum

breakpoints correspond to e.g. 90% and 10% quantiles for the industries in a portfolio,

and these values can be adjusted for alternative momentum strategies. The economic

motivation behind this strategy is to capture market trends in industry returns.

Next, we consider two portfolio strategies sharing the main concept of SM strategy

but being directly connected with in-sample forecasts from a model or a set of models.

We note that our approach can be generalised to a broader selection of model-based

portfolio strategies, such as those analyses in Gruber and West (2017).

Model based momentum The model-based momentum (MM) strategy is based on

the fitted industry returns in the past period from one of the models or a set of models

from Section 5.1. It prescribes to go long in the industry with the highest fitted returns

and go short in the industry with the lowest fitted returns. With ten industries under

consideration, this corresponds to 90% and 10% quantiles of fitted returns. The MM

strategy in this case is similar to the SM strategy where the portfolio return r̃t+1 is

now given as the weighted sum:

r̃t+1 =
N∑
n=1

ỹn,t+1ωn,t, (5.2.1)

where ỹn,t+1 is a draw from the one-period-ahead forecast distribution of the nth in-

dustry’s return yn,t+1
3. The weights are given as

ωn,t =


1 if ȳn,t = maxn{ȳ1,t, . . . , ȳN,t},

−1 if ȳn,t = minn{ȳ1,t, . . . , ȳN,t},

0 otherwise,

(5.2.2)

where ȳn,t is the average of the fitted mean returns of the nth industry over last 12

periods, including time t.

3Note that here we specify a draw from the one-period ahead forecast distribution of the portfolio
return. Realised returns can also be calculated alternatively using observed returns instead of ỹn,t+1.
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To our knowledge, such a model-based momentum strategy has not been considered in

the literature, even though it is a natural extension of the SM strategy. We emphasize

that since the weights are a nonlinear function of random variables ȳn,t, our Bayesian

inference procedure allows us to fully take into account the underlying model and

parameter uncertainty.

Residual based momentum Next, we consider a model-based residual momentum

(RM) strategy. To construct a portfolio based on this strategy, we use the fitted

asset returns from the past period and invest in the assets with the highest unexpected

returns and go short in assets with the lowest unexpected returns. Unexpected returns

in this strategy correspond to the model residuals at the investment decision time.

This strategy can be seen as an extension of the approach of Blitz et al. (2011), who

sort the returns based on past 12 residuals from the Fama-French factor model. The

assets with unexpectedly high or low residuals are given a positive or negative weight,

respectively. The proposed RM strategy follows the same intuition but we do restrict

our analysis to the Fama-French factor model and allow for any model specification

from Section 5.1. Similarly to the MM strategy, the constructed industry portfolio is

a weighted sum of 10 industry returns, with the weights now computed as

ωn,t =


1 if ε̄n,t = maxn{ε̄1,t, . . . , ε̄N,t},

−1 if ε̄n,t = minn{ε̄1,t, . . . , ε̄N,t},

0 otherwise,

(5.2.3)

where ε̄n,t is the average of the residuals for the nth industry return over last 12 periods,

including time t. The difference between the MM and RM strategies is the use of fitted

residuals indicating unexpected returns in the latter case. This can be interpreted as an

error correction mechanism in which portfolio weights adjust according to the deviation

of the last periods’ industry returns from the fitted industry return distribution.

The two proposed model-based strategies can be seen as complimentary policies, tar-

geted at the explained and the unexplained parts of the returns, respectively. More

precisely, MM follows the market trends explained by the systematic component, such

as common factors, while RM builds on return patterns that relate to the unexplained

component, i.e. RM can serve as a “correction mechanism” when the underlying model

of returns fails to represent all market dynamics. Hence, these two strategies, when

conditioned on each model, or a set of models, and combined, span a space of plau-

sible profitable policies to follow. Moreover, they have the advantage of providing an
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economic intuition of capturing estimated market trends.

Equally weighted portfolios In the proposed FDC scheme, as discussed in the next

section, the model-strategy pairs are combined with the combination weights which

need to be inferred. As a simpler approach we can consider a similar combination

of models and strategies but with all the weights being equal. This results in an

equally weighted portfolio of combined models and strategies and can serve as an

additional benchmark to the SM strategy. We note that a portfolio constructed this

way differs from a model-and-strategy-free equal weight portfolio, which as a non-

model-based approach does not provide a measure of uncertainty. In our model-based

equally weighted strategy, we allocate an equal weight 1
M×S to each portfolio resulting

from a model-strategy pair specified in (5.2.2) and (5.2.3) and we borrow at the risk-free

rate in the sense that the 1-month Treasury bill rate gets weight -1. Since the portfolio

weights in (5.2.2) and (5.2.3) sum up to 0, the equally weighted portfolio weights also

sum up to 0. The purpose of considering this equally weighted portfolios is to identify

the importance of time-variation in model and portfolio strategy performances.

Remark on minimum variance strategy We have experimented with the mini-

mum variance (MV) strategy, given that it is widely used in applications and directly

relates to the forecasts of asset returns, volatilities and co-volatilities. However, we

have decided not to explicitly include the results of the MV strategy in our empirical

exercise since the realised returns from this strategy were turned out to be unstable

for all models. This can be attributed to the estimation uncertainty and potential

ill-conditioning in variance-covariance matrix estimates, see also Michaud (1989). To

fairly include the results of this strategy, one would require more structured or “sparse”

variance-covariance matrix estimation as in Kaufmann and Schumacher (2017). This

is left as a topic for further research.

5.3 Weights estimation of Forecast Density Combi-

nation

To combine models from the general class specified in Section 5.1 with the data-driven

strategies discussed in Section 5.2 we build upon the approach of Billio et al. (2013)

for predictive densities combination. The proposed FDC scheme extends the one of

the cited authors by explicitly incorporating portfolio strategies in the analysis. It also
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relates to the literature on dynamic prediction pools proposed in Geweke and Amisano

(2010b), Waggoner and Zha (2012) and Del Negro et al. (2016), however we make

use of a different law of motion for the combination weights. Aastveit et al. (2018b)

provide a survey on the evolution of the density combination approach to forecasting

in economics.

The rationale behind the proposed methodology is the common practice in macroeco-

nomic and financial forecasting of using a weighted combination of forecasts from many

sources, e.g. models, experts and/or large micro-data sets. One then deals with three

groups of variables: forecasts from different models, weights to combine these, and the

variable of interest which is forecasted. The density combination approach gives this

practice a probabilistic foundation by using three types of densities:

FDC.1 forecast densities for different models,

FDC.2 a weight density,

FDC.3 a combination density.

This allows us for the quantification of uncertainty related to the properties of the

implied distributions. In our case, we are mostly interested in mean returns, volatilities

and risk of large losses.

Our focus in this section is threefold. First, we explain the time-line of model estima-

tion and portfolio construction, in which we distinguish four specific periods. Each of

these periods implies different return variables of a portfolio strategy.We note that in

the standard FDC approach the forecast densities from different models are combined

to form a single forecast density of the observed variable of interest (e.g. GDP growth

or inflation) in some optimal way. In our case, we deal with several constructed return

variables and we discuss how and when to use their densities in different periods of

the process timeline. Second, we show how the proposed FDC of model forecasts and

strategy returns can be represented as a nonlinear, non-Gaussian state space model

(SSM). In the general case, such an SSM is analytically intractable and needs to be

analysed using simulation-based methods. Therefore, in the third step, we adopt nu-

merical methods based on Bayesian sampling-based filtering to conduct inference about

the resulting system. Given the computational complexity of the problem, we intro-

duce a novel, efficient and robust filtering method, which we call the MFilter. This

leads to a substantial reduction in computation time and allows us to parallelise the

computations. We refer to Appendix 5.B for technical details of the algorithm.
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5.3.1 Timeline of model estimation, construction and portfolio

holding

Extending the approach of Billio et al. (2013) to allow for the joint analysis of models

and strategies requires us to decide what subsamples of the whole dataset are used

for certain purposes. I.e. we need to set up a timeline for (1) the model estimation

and forecasting, (2) industry portfolios construction, (3) combining of the models and

strategies in our FDC scheme and, finally, (4) the actual portfolio holding over a

fixed period of time (to yield the realised return). Figure 5.3.1 presents our timeline

specification for these four periods.

In the first two periods, [t0-t2] indicated at the top of Figure 5.3.1, the M models

under consideration are estimated annually in the month of June using the preceding

240 monthly observations. This results in a set of fitted returns and the corresponding

residuals denoted by ỹn,m,t and ε̃n,m,t, respectively, for m = 1, . . . ,M models and

n = 1, . . . , N industries.

In the second period, [t1-t2] in Figure 5.3.1, we use the fitted returns and residuals

to form S investment strategies for each model. For each model-strategy pair we then

form the weights which are based on the implied portfolio performances in the last

12 months, including June. Such a strategy formation is similar to Jegadeesh and

Titman (1993) and Fama and French (1993), as we construct industry weights ωn,m,s,t

for industry n, model m and strategy s at time t, at the end of a skip month, July4.

Using (5.2.1), we specify FDC.1 by expressing the one-period-ahead forecast of the

portfolio return from strategy s and model m at time t+ 1 as

r̃m,s,t+1 =
N∑
n=1

ỹn,m,t+1ωn,m,s,t. (5.3.1)

We re-emphasize that our extension of the FDC approach includes an important dif-

ference compared to the standard one. In the latter case one compares the one-period-

ahead forecast distribution of return, r̃m,s,t+1, with the density of the variable of interest

which is observable. In our case, we define the variable of interest, rt, as the actual

return obtained from investing one unit in the asset with maximum return and disin-

vesting from the asset with minimum return. This is not observed ex ante. We define

4In the literature, the skip month is often used to remove market micro-structure effects, see Asness
et al. (2013). Our empirical results are robust to using the month of June for obtaining forecasts
and keeping July as the skip month. The portfolio is held for 12 months starting from August every
year.
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Figure 5.3.1: Time-line of model estimation, strategy construction, FDC, portfolio holding period and realised return.
‘YY’ indicates the year of a portfolio decision.

this as the full information return under the constraint that portfolio weights sum up

to 0. That is, it is based on a strategy that goes long in the asset with the highest

return, and goes short in the asset with the lowest return. Therefore, we compute the

full-information return as

rt = max
n
{yn,t} −min

n
{yn,t}. (5.3.2)

In the third period, [t2-t3] at the bottom of Figure 5.3.1, our Bayesian FDC approach

approximates the distribution of (5.3.2) with the distribution of (5.3.1) (in the sense

of minimizing the Kullback-Leibler divergence) in order to construct densities which

are the basis for the combination approach and obtain the combination weights wm,s,t

for each model-strategy pair. We explain details of this step in the next subsections.

In the fourth period, [t3-t4] in Figure 5.3.1, we evaluate the actual returns, denoted

by rrealm,s,t+12 using the sets of models and strategies. In addition, we evaluate and obtain

the combined realised return, rrealt+12, over a holding period of 12 months as follows:

rrealm,s,t+12 =
t+12∑
t′=t+1

rrealm,s,t′ =
t+12∑
t′=t+1

N∑
n=1

yn,t′ωn,m,s,t, (5.3.3)

rrealt+12 =
t+12∑
t′=t+1

M∑
m=1

S∑
s=1

rrealm,s,t′wm,s,t, (5.3.4)

where yn,t′ are the realised returns for each industry, ωn,m,s,t is the weight of industry n

given model m and strategy s, wm,s,t is the weight of the combination of model m and

strategy s; both types of weights are determined at time t. Realised returns in (5.3.3)

and (5.3.4) are then used to assess the risk-return features of all the models, strategies
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and the combination of these.

5.3.2 Density combinations of model forecasts and strategy re-

turns

Below we explain our procedure for the third period ([t2-t3] in Figure 5.3.1), i.e. how

the FDC approach approximates the distribution of the the full-information return

(5.3.2) with the distributions of one-period-ahead forecast (5.3.1) using the returns

generated from our sets of models and strategies. We express the forecast combination

model of the full-information return (5.3.2) as

p(rt|I) =

∫ ∫
p(rt,wt, r̃t|I)dwtdr̃t (5.3.5)

=

∫ ∫
p(rt|wt, r̃t)p(wt)p(r̃t|I)dwtdr̃t,

where wt and r̃t are the M × S matrices consisting of weights wm,s,t and forecasts

r̃m,s,t, respectively. The conditional density p(rt|wt, r̃t) depends on the weights and the

forecasts, which are distributed according to p(wt) and p(r̃t|I), respectively, with the

latter density being the joint forecast density of all M models and S strategies. Note

that integrals are thus of dimension M × S.

Regarding the combination density FDC.3, for convenience, we specify it as a normal

density. We note, however, that different specifications of the combination density are

possible, but we leave this topic for further research. The chosen normal specification

implies that the model connecting the M×S forecasts from the different sources, r̃m,s,t

with the full-information return rt is given by

rt =
M∑
m=1

S∑
s=1

r̃m,s,twm,s,t + εt, εt
i.i.d.∼ N (0, σ2

ε), t = 1, . . . , T. (5.3.6)

We note two fundamental features of the model in (5.3.6). First, the matrix of weights

wm,s,t for M models and S strategies consists of (latent) random variables so that we

can model and estimate their uncertainty. Note that one can also evaluate the correla-

tions between the weights of the different model-strategy pairs. Second, we include an

error term εt which is an indication that model incompleteness can be modelled and

evaluated. Hence, next to Bayesian learning, (5.3.6) also allows for Bayesian diagnostic

analysis of misspecification. Note that for εt → 0 the density p(rt|wt, r̃t) approaches a

delta Dirac distribution. These two features make the proposed approach more general
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∫ ∫
p(rt|wt, r̃t)p(wt)p(r̃t|I)dwtdr̃t

FDC.3 Combination density Measurement equation

rt ∼ N
(∑M

m=1

∑S
s=1 r̃m,s,twm,s,t, σ

2
ε

)
rt =

∑M
m=1

∑S
s=1 r̃m,s,twm,s,t + εt,

εt
i.i.d.∼ N (0, σ2

ε)

FDC.2 Weight density Link function

wm,s,t = exp(xm,s,t)∑M
m=1

∑S
s=1 exp(xm,s,t)

,

m = 1, . . . ,M, s = 1, . . . , S.

Markov process Transition equation
xt ∼ N

(
xt−1 + h(zt), σ

2
ηIM×S

)
, xt = xt−1 + h(zt) + ηt,

ηt
i.i.d.∼ N

(
0, σ2

ηIM×S
)
,

where xt is the M × S vector of latent states xm,s,t, IM×S is the identity
matrix and zt may be included to capture (observed) economic variables
believed to help explain xt.

FDC.1 Forecast densities Time-varying coefficients

r̃m,s,t+1 =
∑N

n=1 ỹn,m,t+1ωn,m,s,t.

Table 5.3.1: FDC as a nonlinear state space model.

than Bayesian model averaging where the weights are posterior probabilities that are

fixed and the true model is assumed to be in the model set.

Following Billio et al. (2013), we implicitly define the weight density FDC.2 using

a link function of latent states xt, which we choose to be the multivariate logistic

transform. The process for xt is provided in Table 5.3.1, which also summarises the

remaining densities in the FDC scheme.

The final step of the procedure for the third period is the estimation of the combination

model (5.3.5). This is non-trivial because typically the associated likelihood is analyt-

ically intractable. A possible solution to this problem, proposed by Billio et al. (2013),

is to represent the combination model as a nonlinear, non-Gaussian SSM, as shown in

Table 5.3.1. Hence, the FDC approach is related to filtering methods from the litera-

ture on nonlinear state space modelling and inference. We illustrate this connection in

the next subsection.
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5.3.3 MFilter

Given the nonlinear, non-Gaussian SSM structure of the FDC scheme, our goal is to

perform on-line inference over the optimal underlying weights5. We stress that even

though our task is the same as in the sequential Monte Carlo (SMC) literature, our

approach is noticeably different. Moreover, we argue that our MFilter shares some

similarities with the literature on importance sampling for SSM based on smoothing,

e.g. EIS of Richard and Zhang (2007) and Liesenfeld and Richard (2003), or NAIS of

Koopman et al. (2015). We show through a set of simulation studies that the proposed

MFilter outperfomrs (in terms of the approximation quality and computing time) other

nonlinear, non-Gaussian filters such as the Bootstrap Particle Filter (BPF) of Gordon

et al. (1993) and the Auxiliary Particle Filter (APF) of Pitt and Shephard (1999).

The combination scheme in Table 5.3.1 admits the general SSM representation:

rt ∼ p(rt|αt), (5.3.7)

αt ∼ p(αt|αt−1), (5.3.8)

in which (5.3.7) and (5.3.8) describe the measurement process of the “optimal return”

rt from equation (5.3.2) (treated as “the dependent observation”), and the transition

process of the extended state, respectively. We assume the initial state distribution

α0 ∼ p(α0). The extended state consists of the latent combination weights wt and

the parameters of the system θ, i.e. αt = (wT
t ,θ

T )T . The vector of model parameters

θ contains the measure of model-strategy set incompleteness σ2
ε and potentially also

appropriately specified learning parameters.

We are interested in p(αt|r1:t), the marginal distribution of the posterior distribution

of the state, called filtering distribution and given by

p(αt|r1:t) =

∫
p(α0:t|r1:t)dα0:t−1. (5.3.9)

Our novel filtering approach is summarised as follows. First, the MFilter modifies

the particle filtering methods by not requiring a resampling step. Second, it extends

smoothing-based importance sampling methods by using an on-line sequential proce-

dure for inference. Third, we use mixtures of Student’s t distribution as the importance

density, to allow for more flexibility and robustness in the approximation compared to

the more restrictive exponential class.

5Optimal in the sense of minimizing the Kullback-Leibler divergence between (5.3.2) and (5.3.1).
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We start with providing links between the MFilter and particle filters (PFs). PFs are

SMC methods based on a recursive formula for (5.3.9), which expresses p(αt|r1:t) as

a function (potentially time-varying) of p(αt−1|r1:t−1) and rt. Then the computations

are carried out in two steps: prediction and updating. The former step relates to the

way we sample draws at time t and the latter provides an IS correction for not using

the true target density for sampling. Importantly, propagation of the particles brings

about the necessity of resampling, as the sequential importance sampling is bound to

lead to weight degeneracy. The consequence of the weight degeneracy problem is that

finally only one particle carries the full weight. Not only might the resampling step be

time consuming but it also introduces additional MC variation6.

We avoid the propagation step by replacing it by an independent sampling step in

each time period t. To this end we relate to the literature on the smoothing-based im-

portance sampling for SSM, e.g. efficient importance sampling of Richard and Zhang

(2007) and Liesenfeld and Richard (2003), or numerically accelerated importance sam-

pling of Koopman et al. (2015). These methods are based on obtaining a good ap-

proximation to the smoothing density at each time period t and drawing from each

p(αt|r1:t) independently. However, they are designed for an off-line analysis, i.e. they

are based on a sample of a fixed size, while our primary goal is on-line tracking based

on filtering, i.e. inference over a state space of increasing dimension. We make use of

independent sampling in a sequential way using a very flexible approximation density

based on mixtures of Student’s t densities.

In order to specify our filtering method, we expres (5.3.9) as

p(αt|r1:t) ∝ p(rt|αt)p(αt|r1:t−1),

which presents the key Bayesian idea, where the posterior distribution of the current

state αt given all the available data r1:t is proportional to the prior p(αt) updated

by the likelihood p(rt|αt), where we condition upon r1:t−1. The likelihood involves

only the most recent observation rt due to the sequential structure of the SSM. Even

though we do not want to perform propagation of importance densities in the usual

way of filtering procedures, we still need to keep track of the sequential structure of

the SSM. We achieve this by putting a hierarchical prior on αt, based on the empirical

distribution of αt−1 as follows

p(αt|r1:t,αt−1) ∝ p(rt|αt)p(αt|αt−1)p(αt−1). (5.3.10)

6It also leads to path degeneracy, which is particularly problematic in the context of smoothing and in
the MCMC sampling based on Particle MCMC, see Andrieu et al. (2010) and Lindsten et al. (2014).
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Suppose that we have a sample {α(i)
t−1}Mi=1 from the previous time period t− 1 so that

we can approximate p(αt−1) as p(αt−1) ≈ 1
M

∑M
i=1 δα(i)

t−1
(αt−1), where δa(·) is the Dirac

measure at a. Then, (5.3.10) becomes:

p(αt|r1:t,αt−1) ∝∼
1

M
p(rt|αt)

M∑
i=1

p(αt|α(i)
t−1)δ

α
(i)
t−1

(αt−1), (5.3.11)

where ∝∼ means “approximately proportional to”. Typically we cannot draw from

(5.3.11) directly and we need to resort to sampling techniques such as importance

sampling.

The choice of the proposal density is crucial for the performance of any importance

sampling scheme and it has received considerable attention in the SMC literature,

see Doucet et al. (2001), Liu (2001), Kunsch (2005) and Creal (2012). In the MFil-

ter algorithm we base our approximation of (5.3.11) on the Mixture of t by Impor-

tance Sampling weighted Expectation-Maximization (MitISEM) algorithm proposed by

Hoogerheide et al. (2012) and developed in Baştürk et al. (2016). It has been shown to

be able to effectively approximate complex, non-elliptical distributions thanks to two

main features of this algorithm: the class of importance distributions (mixtures of mul-

tivariate Student’s t distributions), and their joint optimization (with the expectation-

maximization, EM, algorithm). The former allows to closely track distributions of

nonstandard shape (multimodal, skewed). The latter is iteratively carried out with the

objective of minimizing the Kullback-Leibler divergence between the unknown true

target distribution and the candidate density.

Robustness and flexibility in constructing approximations are particularly important

from the filtering perspective in econometrics. For instance, stochastic volatility of

many time series demonstrates itself via volatility clustering and it might be hard to

efficiently capture periods of low and high volatility using standard approaches based

on a single density approximation. Furthermore, especially in macro-econometrics one

often observes breaks in time series which usually are very challenging to filter. We

refer to the latter issue in the later part of this section.

Employing the basic MitISEM algorithm to approximate (5.3.11) means targeting the

marginal posterior density p(αt|r0:1,αt−1) with a categorical prior C({α(i)
t−1}Mi=1) (with

equal weights). Hence, drawing from such a posterior density requires sampling the

prior hyperparameters from the categorical distribution being the equally weighted

sample of {α(i)
t−1}Mi=1. In practice, this means adopting hierarchical Bayesian modelling,

in which at the first stage we draw αt−1 ∼ C({α(i)
t−1}Mi=1), and at the second stage we
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draw αt|αt−1 ∼ g
(H)
t (αt), where g

(H)
t (αt) is the final approximation being a mixture

of H Student’s t densities. The resulting sample {α(j)
t }Nj=1 becomes the empirical prior

for the next time period’s analysis.

Importantly, the MitISEM algorithm requires only candidate draws and IS weights,

so it can simultaneously deal with several target densities. Suppose that at time t a

separate target density is specified based on each draw α
(j)
t−1, j = 1, . . . ,M , obtained

in the previous time period, i.e.

p(rt|αt, r̃t)p(αt|α(j)
t−1).

Then we use MitISEM to construct a single approximation for these multiple targets

for each time period t by minimizing the average of the Kullback-Leibler divergences

between the target densities and the candidate density. In this setting the target for

αt depends on α
(j)
t−1 but the candidate does not. This specific application of MitISEM

for the purpose of quick filtering constitutes the core of the MFilter algorithm. In our

situation the target density of αt given αt−1 does not crucially depend on the particular

value of αt−1, so that conditioning on the mean, variance and other characteristics

of the distribution of αt−1 suffices here. We provide the details of the algorithm in

Appendix 5.B. Note that computational efficiency gains are feasible by making use of

GPU and parallel computing.

Validation and importance for typical features of economic time series Monte

Carlo (MC) experiments reported in Appendix 5.C demonstrate a good statistical per-

formance of the MFilter. To illustrate its economic relevance, we compare below the

performance of the MFilter and two other filters, BPF and APF, on an experiment

with structural breaks in the time series. We examine two cases of structural breaks

in AR(1) models and we use the finite mixture scheme in Table 5.3.1 with the logis-

tic weight specification, so that the measurement equation is nonlinear in the state

process.

We simulate the following five return series with different persistence, which play the

role of the draws r̃t from the forecast densities

r̃1,t =
k

10
+

k

10
r̃1,t−1 + ηt, ηt

i.i.d.∼ N (0, 1), k = 1, . . . , 5.

Next, we create the measurement series rt as a series switching between the generated

series r̃i,t, i = 1, . . . , 5. We then compare the MFilter with the BPF and APF for two

different cases, varying in the number of breaks in the series, as described below. The
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Case 1 Case 2
Model MSE Time MSE Time

KF 1.000 0.007 1.000 0.007
BPF 0.052 58.483 0.202 58.483
APF 0.081 68.015 0.077 68.015

MFilter 0.039 40.676 0.067 41.180

first case has a single break/switch while the second case has two breaks/switches to

emulate crisis periods.

Case 1 One switch at t = 101 from r̃1 to r̃5:

rt =

r̃1,t + εt for t = 1, 2, . . . , 100,

r̃5,t + εt for t = 101, 102, . . . , 200,

where εt ∼ N (0, σ2
ε) with σε = 0.05.

Case 2 Two switches at t = 101 (r̃1 → r̃5) and t = 151 (r̃5 → r̃3):

rt =


r̃1,t + εt for t = 1, 2, . . . , 100,

r̃5,t + εt for t = 101, 102, . . . , 150,

r̃3,t + εt for t = 151, 152, . . . , 200,

where εt
i.i.d.∼ N (0, σ2

ε) with σε = 0.05.

We compare the performance of the BPF, APF and MFilter in a small MC experiment

of R = 100 replications. Table 5.3.2a presents a comparison of different filters for

structural breaks in AR(1) models based on the Mean Squared Error (MSE), where

the error is the difference between the estimated state and the true state rt−εt, for two

different experiments. In both Case 1 and Case 2 the MSE is lowest for the MFilter.

This can be contributed to the fact that it is more precise in adapting after the shift(s),

even though it requires a bit more time in adapting at the beginning of the sample.

The MFilter importance density adapts quickly at each time period after the break(s).

We next compare the weights obtained by APF and MFilter visually. Figures 5.3.2a–

5.3.2c show the model weights for Case 1. The switch in the data generating process

from Model 1 to Model 5 makes it difficult for the BPF and APF to adjust quickly and

one can see that the MFilter is faster in picking up the “break” due to the updated
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(a) BPF weights (Case 1).
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(b) APF weights (Case 1).
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(c) MFilter weights (Case 1).
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(d) BPF weights (Case 2).
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(e) APF weights (Case 2).

20 40 60 80 100 120 140 160 180 200
0

0.5

1
Model 1

20 40 60 80 100 120 140 160 180 200
0

0.5

1
Model 2

20 40 60 80 100 120 140 160 180 200
0

0.5

1
Model 3

20 40 60 80 100 120 140 160 180 200
0

0.5

1
Model 4

20 40 60 80 100 120 140 160 180 200
0

0.5

1
Model 5

(f) MFilter weights (Case 2).

Figure 5.3.2: Filtered model probability weights (red lines) using the Bootstrap Particle Filter (BPF), the Auxiliary
Particle Filter (APF), and our MFilter together with the 95% credibility region (gray area) for models 1 to 5 (different
rows). Top (case 1): the true model has state r̃1,t = 0.1 + 0.1r̃1,t−1 + ηt, ηt ∼ N (0, 1) for t = 1, . . . , 100, and
model r̃5,t = 0.5 + 0.5r̃5,t−1 + ηt, ηt ∼ N (0, 1) for t = 101, . . . , 200; bottom (case 2): the true model has state
r̃1,t = 0.1 + 0.1r̃1,t−1 + ηt, ηt ∼ N (0, 1) for t = 1, . . . , 100, model r̃5,t = 0.5 + 0.5r̃5,t−1 + ηt, ηt ∼ N (0, 1) for
t = 101, . . . , 150 and model r̃3,t = 0.3 + 0.3r̃3,t−1 + ηt, ηt ∼ N (0, 1) for t = 151, . . . , 200.
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candidate at each time period. Figures 5.3.2d–5.3.2f illustrate Case 2, in which there

are two switches in the data generating process, first from Model 1 to Model 5, and then

further to Model 3. The MFilter is the fastest in picking up the “breaks” (particularly

the second one) which again can be contributed to the updated candidate at each time

period.

5.4 Empirical application

The aim of our empirical analysis is to answer three central questions. First, whether

averaging over sets of models and strategies in FDC pays off in terms of improving

expected returns and risk measures. Second, what insights can be gained from the

dynamic patterns of the combination weights. For instance, one can expect different

patterns in quiet and in more volatile periods or learning effects which lead to improv-

ing the set of models and strategies. Third, what effect can misspecification of the

model-strategy set have on the results. More specifically, we are interested in whether

or not we can identify “bad” models and strategies and how removing of “bad” models

and strategies affects the results. Moreover, we would like to use diagnostic learn-

ing, economic information and/or posterior residual analysis to improve modelling and

strategy choice. We note that the second problem relates to learning through updating

available past information, natural in a Bayesian setting. The third goal deals with

the robustness of our results with respect to misspecification.

In our final analysis we consider eight sets of models from the general FAVAR-SV class

from Section 5.1, reported in Table 5.4.1. For the DFM and the FAVAR model we

consider K = 1, . . . 4 factors and L = 1, 2 lags. For the all models, Bayesian inference

is performed with 5000 burn-in and 5000 posterior draws. We combine these models

with two data-driven strategies from Section 5.2, namely MM and RM, using the FDC

framework. As a benchmark for comparison we use the SM strategy and, for FDCs

based on sets of models and strategies in Subsection 5.4.2, additionally the equally

weighted portfolio. We focus on the distributions of realised returns rrealt , see (5.3.4),

stemming from different combinations, which we compare using four indicators: the

mean and three risk measures being volatility, Sharpe Ratio and the largest loss. We

first analyse the mean returns and risk measures for the realised returns obtained using

several model-strategy pairs individually, which we compare with the performance of

the benchmark SM strategy. Next, we report the time-varying performances of FDCs

using sets of models and strategies.
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Abbreviation Description

SV Basic SV model
VAR-N VAR with one lag and normally distributed errors
VAR-SV VAR with one lag with stochastic volatility in errors
DFM-N DFM with normally distributed idiosyncratic errors
DFM-SV DFM with stochastic volatility in idiosyncratic errors
DFM-SV2 DFM with stochastic volatility in idiosyncratic and latent errors
FAVAR-SV FAVAR with SV in idiosyncratic errors
FAVAR-SV2 FAVAR with SV in idiosyncratic and latent errors

Table 5.4.1: Analysed models sorted by increasing complexity.

5.4.1 FDCs using individual models and strategies

We first discuss “small” FDCs, in which we combine a single model with a single

strategy. As a preliminary step we consider the performance of FDCs using three basic

individual models: the VAR model with normal disturbances (VAR-N), the standard

SV model (SV) and the DFM with K = 4 factors and L = 2 lags (DFM(4,2)). These

three models belong to the FAVAR-SV(4,2) class. We then move to a broader range of

86 model-strategy pairs, also discussed individually.

Basic models The results for three basic models are presented in Table 5.4.2 and

compared with the results of the baseline SM strategy. We can draw three conclu-

sions from this exercise. First, there does not exist a clear winning model-strategy

combination in terms of all four indicators. Moreover, the performance of alternative

model-strategy combinations based on distinct indicators is noticeably different. Sec-

ond, for each indicator there is a model-strategy combination which dominates the

benchmark SM strategy, with the SV model combined with RM outperforming the SM

strategy in terms of all four indicators. Clearly, it pays off to make use of a particular

econometric model with a stochastic volatility component combined with an effective

model-based strategy. Third, there is one model-strategy combination which clearly

performs worst: the DFM-N(4,2) model in combination with the MM strategy is the

only combination that yields a negative average return. This may be caused by a type

of model misspecification which is particularly detrimental for the MM strategy, but a

more detailed examination would be required to pin down the specific reason for this

very poor performance.

179



CHAPTER 5. DENSITY COMBINATIONS OF MODELS AND STRATEGIES

MM RM
Model Mean Vol. SR LL Mean Vol. SR LL

VAR-N 0.02 5.0 0.005 -24.1 0.09 5.8 0.015 -35.0
SV 0.10 5.1 0.019 -34.7 0.11 5.6 0.019 -26.0

DFM-N(4,2) -0.05 5.5 -0.009 -27.4 0.12 5.4 0.022 -31.1

SM
Model Mean Vol. SR LL
− 0.09 5.7 0.016 -26.2

Table 5.4.2: Mean returns and risk measures for the realised return densities from individual models-strategy com-
binations. Bold values: an “equal or better” value compared to the benchmark of SM. SM results reported in a single
row as this strategy is not based on any model.

All specifications As mentioned above, for each of three DFM models and two

FAVAR models we consider 8 different specifications corresponding to K = 1, . . . , 4

factors and L = 1, 2 lags in the factor equation. This results in 40 combinations of

DFM and FAVAR models to be estimated. In addition, we estimate the SV model and

two VAR models for which we restrict the dynamics to the case of one lag. Given 10

data series, the VAR(1) delivers already very flexible dynamic patterns (shown by their

implied moving averages). For each of these 43 specifications, we construct portfolios

based on the MM strategy and the RM strategy. Hence, we obtain 86 specifications of

model-strategy combinations.

MM RM
Model (K, L) Mean Vol. SR LL Mean Vol. SR LL

VAR-N − 0.02 5.0 0.005 -24.1 0.09 5.8 0.015 -35.0
SV − 0.10 5.1 0.019 -34.7 0.11 5.6 0.019 -26.0

VAR-SV − 0.12 4.5 0.028 -20.2 0.13 5.8 0.021 -37.4

DFM-N (1,1) -0.04 4.9 -0.009 -20.0 0.13 5.7 0.023 -34.4
DFM-N (4,2) -0.05 5.5 -0.009 -27.4 0.12 5.4 0.022 -31.1

DFM-SV (1,1) 0.04 5.0 0.007 -20.0 0.11 5.8 0.019 -37.1
DFM-SV (4,2) 0.12 5.4 0.023 -21.7 0.06 5.4 0.011 -31.1

DFM-SV2 (1,1) 0.07 4.6 0.014 -18.2 0.06 5.5 0.010 -37.4
DFM-SV2 (4,2) 0.07 5.7 0.013 -32.3 0.00 5.2 0.000 -37.4

FAVAR-SV (1,1) 0.08 4.6 0.018 -18.3 0.06 5.5 0.011 -37.4
FAVAR-SV (4,2) 0.08 5.7 0.015 -32.3 0.02 5.2 0.005 -37.4

FAVAR-SV2 (1,1) 0.09 4.6 0.019 -18.3 0.06 5.5 0.011 -37.4
FAVAR-SV2 (4,2) 0.08 5.7 0.014 -32.3 0.03 5.2 0.005 -37.4

Table 5.4.3: Mean returns and risk measures (volatility [Vol.], Sharpe Ratio [SR], and the largest loss [LL]) for the
realised return densities from the selection of model-strategy pairs, with models from Section 5.1 and strategies being
MM and RM. Measures from the SM strategy: mean 0.09, volatility 5.7, Sharpe ratio 0.02 and largest loss -26.2. Bold
values: an “equal or better” value compared to SM. K: the number of factors, L: the number of lags.

Table 5.4.3 presents a selection of the results on the properties of the realised re-
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turns from these 86 combinations, which in detail are shown in Table 5.D.1 in Ap-

pendix 5.D. We can see that mean realised returns differ substantially over alterna-

tive model-strategy specifications, with the MM strategy giving poor results for simple

VAR-N and DFM-N models. For both strategies (MM and RM) highly complex model,

DFM-SV2 and FAVAR-SV2, do not necessarily lead to higher mean returns compared

to less complex specifications of DFM-SV and FAVAR-SV. This suggests that the SV

component in factor residuals (SV2) may mostly lead to over-fitting rather than to

better out-of-sample performance. However, allowing for SV in the observation error

for the VAR model and DFM leads to substantially better results (for both strategies)

compared to i.i.d. disturbances. It is also noteworthy that the choice of the number

of factors and lags in the factor models strongly influences the results for DFMs and

FAVAR models. Further, mean returns from some model and strategy combinations,

e.g. DFM-SV(4,2)-MM and DFM-SV(1,1)-RM (or FAVAR-SV(3,1)-MM and FAVAR-

SV(2,2)-RM in Table 5.D.1), are equal or higher than those from the SM strategy. In

summary, there exist noticeable differences in the performance of the two strategies:

in general, more complex model structures such as DFM-SV and FAVAR-SV are well-

suited for the MM strategy, the RM strategy already leads to relatively high mean

returns when adopted with simpler models. Apparently, using the latter strategy im-

plies learning from past errors which can compensate for the lack of model complexity.

We next compare the volatility of realised returns. Table 5.4.3 reveals that the dif-

ferences in realised return volatilities between model-strategy combinations are less

pronounced than the differences in mean realised returns. The volatilities obtained

from each model-strategy combination are also close to the volatility from the SM

strategy. An interesting observation stems from comparing both model-based strate-

gies: given the same model class, MM generally leads to a lower volatility compared

to RM. However, this difference is sensitive to the choice of the number of factors and

lags in the factor models.

Regarding the remaining risk indicators, we note that the results for Sharpe ratios

exhibit a similar pattern to those on mean returns, hence our conclusions on mean

returns listed above hold also in this case. As far as largest losses are concerned, both

overly simple models and overly complex ones (like DFM-SV2 and FAVAR-SV2) lead

to excessive large losses compared to the models with a well-balanced parametrisation.

Contrary to its superior results in terms of mean returns, the SV model leads to sub-

stantial risk of loss when combined with the MM strategy. Nevertheless, for all models

except SV, the largest loss is substantially lower for the MM strategy than for the RM

strategy. A complex model like FAVAR-SV combined with MM leads to a very small
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extreme loss. Clearly, the strategy choice crucially matters for the risk of returns.

An important advantage of Bayesian inference is that it provides a complete distribu-

tion of the realised returns from a specific model-strategy combination, at any time

point t. Hence, we can easily compute credible intervals (CI) for the realised returns as

well as for the four measures discussed above. Due to space considerations we cannot

present the intervals from all the model-strategy pairs, but for illustration we con-

sider three selected model and portfolio strategies. Figure 5.4.1 presents the 99% CI

of the realised returns from DFM(1,1) with MM, DFM-SV(4,1) with MM and DFM-

SV(3,2) with RM. These intervals of returns are relatively tight for all three model

and strategy combinations. In addition, even the worst-performing model and strategy

combination, DFM(1,1) and MM, has very high returns in some periods. Similarly,

the better performing strategies, DFM-SV(3,2) with RM and DFM-SV(4,1) with MM,

lead to extreme losses in some periods. We find these observations to be valid for all

the models we consider.

(a) DFM (K = 1, L = 1) with MM.

(b) DFM-SV (K = 3, L = 2) with RM.

(c) DFM-SV (K = 4, L = 1) with MM.

Figure 5.4.1: 99% CI for realised return for three selected model-strategy pairs.

The analysis of realised return from different model structures and investment strate-
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gies leads to several general conclusions. Overall, the results on the mean and risk

of returns are sensitive to model and strategy choices.Using MM in combination with

very simple models which do not fit well to the data, like VAR-N and DFM-N, results

in poor average realised returns. Complex models, like DFM-SV2 and FAVAR-SV2,

tend to overfit and do not lead to better results compared to slightly simpler mod-

els like DFM-SV and FAVAR-SV. RM generates reasonable returns for simple models

such as VAR-N, SV and DFM-N. However, similarly to MM, it also does not preform

well for overly complex models, DFM-SV2 and FAVAR-SV2. As far as risk measures

are concerned, the MM strategy performs reasonably well for almost all models. The

exceptions are some members of the DFM class (for which there exists a sensitivity

to the number of factors and lags) and the SV model which generates returns subject

to a very high risk. Interestingly, the latter performed quite well when combined with

the RM strategy. However, such reasonable outcomes from the SV-RM pair cannot

conceal the underperformance of RM in terms of risk for all the remaining models.

Apart from diverse performance on average, we also notice substantial time variation

in the behaviour of individual model-strategy combination. This lack of a universal,

time-independent “winner” among both models and strategies is one of the main rea-

sons for combining sets of models and strategies. We explore such time-varying FDCs

in the next subsection.

5.4.2 FDCs using sets of models and strategies

The analysis of the time-varying performances of FDCs using sets of models and strate-

gies is carried out in three stages. We start with the basic model structures used in the

first part of the previous subsection, VAR-N, SV and DFM-N(4,2), which we consider

as a set and combine with the set of MM and RM strategies using the FDC scheme. We

aim to disentangle the contribution of each component from the final outcome. Next,

we investigate whether a combination of two more flexible models can outperform this

combination of three basic models. Finally, we explore whether it is effective to choose

only one model but with a very flexible parametric structure, in combination with the

set of MM and RM strategies. To this end, we consider the FAVAR-SV(1-4,1-2) model

and optimise it with respect to the number of factors and lag. Table 5.4.4 presents the

main outcomes.

Combination of three basic models and two strategies The top panel of Ta-

ble 5.4.4 showns that a FDC of three basic models and two strategies leads to improved
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risk features compared to individual models combined with individual strategies. The

risk for this combination, as measured by volatility and the largest loss, is typically

lower than for the individual models. Including strategies in the combination seems

to be crucial for such an improvement in terms of risk. Second, the FDC in question

does not give substantially better mean returns than its component models individu-

ally. This can be attributed to an excessive weight of the “bad” DFM-N(4,2) model.

Moreover, as shown in Figure 5.4.2a, to be discussed in more detail below, there does

not exist any strong learning about the weight of this “bad” model, DFM-N(4,2), in

the sense that this weight remains substantial over time. We conclude that, for our

data and model-strategy set, the learning mechanism for the combination weights does

not effectively lower combination weights of a poor performing model over time.

Combinations of two flexible models and two strategies The analysis of the

combination of three basic models and two strategies leads to rather diverse results,

therefore in the next step we aim to explore a smaller set of more flexible models. We

thus consider a set of models belonging to the VAR-SV and DFM-SV classes. For the

latter model the FDC is optimised over the number of factors K = 1, . . . , 4 and the

number of lags L = 1, 2. We refer to the optimised DFM-SV model as DFM-SV(1-4,1-

2). The middle panel in Table 5.4.4 presents the results of the FDC of this set of models

and the two strategies. We can conclude that the set of two flexible models and two

strategies leads to better results than the set of three basic models and two strategies.

Note that the results for the FDC of the set of two strategies and individual models

indicate that VAR-SV has good mean return features but less so for risk features while

for the case of the model DFM-SV(1-4, 1-2) the opposite holds. Thus, if an investor is

interested in the joint behaviour of expected return and risk, then averaging over a set

of flexible models and strategies is beneficial.

Combination of models from a single very flexible class and two strategies

In the third panel in Table 5.4.4 we report the properties of the realised returns obtained

using one model with a very flexible parametric structure, specified as FAVAR-SV and

optimised over 4 factors and 2 lags, combined with both investment strategies. In total

there are 16 forecast densities, which are summarised in Table 5.D.2 in Appendix 5.D.

Our conclusion is that choosing a set of one very flexible model and two strategies

implies better mean return but also more risk than the set of two flexible models and

two strategies.
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Model Strategy Mean Vol. SR LL

Combination of three basic models and two strategies

VAR-N & SV MM & RM 0.10 3.9 0.025 -23.0
& DFM-N(4,2) (0.01,0.18) (3.6,4.2) (0.002,0.047) (-28.8,-17.5)

Combination of two strategies per component model

VAR-N MM & RM 0.09 4.7 0.019 -32.6
(-0.03,0.20) (4.0.4,5) (-0.007,0.043) (-35.6,-20.9)

SV MM & RM 0.13 4.3 0.032 -22.2
(-0.02,0.28) (3.9,4.6) (-0.005,0.065) (-29.9,-16.1)

DFM-N(4,2) MM & RM 0.03 4.3 0.006 -24.4
(-0.12,0.17) (4.0,4.7) (-0.028,0.041) (-31.1,-16.8)

Combination of two flexible models and two strategies

VAR-SV MM & RM 0.15 3.7 0.041 -21.6
& DFM-SV(1-4,1-2) (0.08, 0.22) (3.5, 3.9) (0.021, 0.061) (-26.4, -16.4)

Combination of two strategies per component model

VAR-SV MM & RM 0.23 4.5 0.051 -37.2
(0.11, 0.35) (4.2, 4.9) (0.024, 0.080) (-37.3, -36.8)

DFM-SV(1-4,1-2) MM & RM 0.06 3.4 0.018 -14.4
(0.00, 0.12) (3.2, 3.5) (0.000, 0.036) (-20.1, -11.0)

Combination of models from a single very flexible class and two strategies

FAVAR-SV(1-4, 1-2) MM & RM 0.18 4.5 0.039 -34.8
(0.14, 0.22) (4.5, 4.6) (0.031, 0.048) (-35.0, -34.6)

Benchmark strategies and combination of models and strategies

− SM 0.09 5.7 0.016 -26.2

VAR-N, SV, DFM-N(4,2) MM & RM 0.07 3.5 0.018 -21.4
(equal weight) (equal weight) (-0.01,0.13) (3.3,3.8) (-0.002,0.038) (-26.4,-16.2)

VAR-SV,DFM-SV(1-4,1-2) MM & RM 0.07 3.3 0.022 -13.7
(equal weight) (equal weight) (0.03,0.11) (3.2,3.4) (0.01,0.033) (-17.8,-10.9)

FAVAR-SV(1-4, 1-2) MM & RM 0.05 3.6 0.013 -21.6
(equal weight) (equal weight) (0.02,0.07) (3.5,3.7) (0.005,0.021) (-24.6,-19.5)

Table 5.4.4: Mean returns and risk measures (volatility [Vol.], Sharpe Ratio [SR], and the largest loss [LL]) for the
realised return densities from different sets of models and strategies. Equal weight denotes equally weighted models
and strategies. Bold values: an “equal or better” value compared to the benchmark of SM. 90% credible intervals in
parentheses.
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Equal weights The bottom panel of Table 5.4.4 shows the results for the equally

weighted portfolio. Equal weights perform – for our data and model-strategy set –

worse than time-varying weights in terms of mean returns and Sharpe ratios, see the

first, second and third panel. Equal weights also perform worse than SM in terms

of mean returns. For some models our FDC procedure performs slightly worse than

equal weights in terms of the volatility and the largest loss, however we note that the

portfolio optimisation underlying our FDC aims at maximising the return (and not e.g.

minimising the volatility). Equal weights lead to smaller variance and lower loss than

the benchmark SM strategy. Overall, the choice of the model set remains important,

in both cases of equal weights and time-varying weights. Therefore, a sensible a priori

model selection and/or an a posteriori trimming of models can be beneficial.

Credible intervals As already discussed in the previous subsection, the chosen

Bayesian framework provides us with complete densities of the realised returns and

of the implied measures for each model-strategy specification. Hence, we also report in

Table 5.4.4 the 90% CI for each of the four criteria. It can be seen that these intervals

become smaller going from the set of three basic models, through the set of two more

flexible models, to the set of one very flexible model and even to the equal weights case

for the FAVAR-SV(1-4,1-2) model. Thus, a very flexible model structure and a priori

restrictions on the parameters (fixed weights) lead to more accurate estimation results.

This information is a relevant input to the decision-making process of an investment

manager.

Learning about weight dynamics and their uncertainty The evolution over

time of the distribution of the realised returns, including the mean returns and risk

measures, is certainly important for understanding the process optimal asset alloca-

tion. In the FDC scheme the realised returns are obtained as a time-varying mixture of

model-strategy pairs, therefore we are interested in the investigation of model weights

and strategy weights in these combinations. Figures 5.4.2 and 5.4.3, presenting poste-

rior means of the model weights and strategy weights, respectively, reveal a considerable

time variation in the FDC weights for different sets of specifications. The weights of the

basic models in Figure 5.4.2a, the two flexible models in Figure 5.4.2b and models from

a single very flexible class FAVAR-SV (with models with the same number of factors

but different number of lags being treated together) in Figure 5.4.2c show a clear time

variation. This suggests that different data features (such as autocorrelation, cross-

correlation and time-varying volatility) are better (or worse) captured at certain time
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(a) Combination of VAR-N, SV, DFM(4,2) and two strategies MM and RM.
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(b) Combination of DFM-SV(1-4,1-2), VAR-SV and two strategies MM and RM.

1948 1950 1952 1954 1956 1958 1960 1962 1964 1966 1968 1970 1972 1974 1976 1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

K=1 K=2 K=3 K=4

(c) Combination of 8 FAVAR-SV models and two strategies MM and RM. Models with the same number of factors but
different number of lags are treated together.

Figure 5.4.2: Model weights (posterior means) of from FDCs with different sets of models and strategies.
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(a) Combination VAR-N, SV, DFM(4,2) and two strategies MM and RM.
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(b) Combination DFM-SV(1-4,1-2), VAR-SV and two strategies MM and RM.

1948 1950 1952 1954 1956 1958 1960 1962 1964 1966 1968 1970 1972 1974 1976 1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014

0

0.2

0.4

0.6

0.8

1

(c) Combination 8 FAVAR-SV models and two strategies MM and RM

Figure 5.4.3: Strategy weights (posterior means) of from FDCs with different sets of models and strategies.
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periods by particular models in these combinations, so these models become more (or

less) relevant in given periods. For instance, the weights per number of factors in the

FAVAR-SV combination reveal that in the most recent periods models and strategy

combinations with a single factor have higher weights than in earlier periods. This

finding is in line with the relatively low canonical correlations between returns at the

end of the sample compared to the beginning of the sample, as shown in Figure 5.1.1b.

However, using a single model with only one factor is not sufficient to provide optimal

portfolio allocation in the 2010s, for which model diversification is still required. Sim-

ilarly, posterior means of strategy weights are subject to a substantial time-variation,

see Figure 5.4.3. Interestingly, these fluctuations are more pronounced than those for

the model weights. A plausible reason for this is that there is a fundamental difference

between the strategies, while the models in the FAVAR-SV case are all nested in the

same class.

We present the uncertainty in the strategy weights in Figure 5.4.5 based on their

60% CI. The set of the three basic models (Figure 5.4.4a) generally leads to higher

uncertainty, i.e. wider CI, than the two flexible models (Figure 5.4.4b). The differences

between the two flexible models (Figure 5.4.4b) and one model FAVAR-SV(1-4,1-2)

(Figure 5.4.4c) are less pronounced, however for the latter case the importance of the

RM strategy at the beginning of the recent financial crisis is confirmed by relatively

low uncertainty in strategy weights.

It is also interesting and relevant for policy recommendations to investigate the be-

haviour of the RM weights versus the MM weights. For the best performing model-

strategy combination, i.e. VAR-SV and DFM-SV(1-4,1-2), we observe that the MM

strategy remains important also during the recent crisis period. It is noteworthy that

for both, the three basic models and the one very flexible model, the RM strategy is

vital, particularly, around the 1990s and at the beginning of the recent financial crisis

around 2008. This suggests that the RM strategy performs better in volatile periods.

Moreover, the RM strategy may be more robust against misspecification, but a closer

investigation of this matter is left as a topic for further research.

Our findings on the strategy weights relate to Jegadeesh and Titman (2001) and Blitz

et al. (2011). Jegadeesh and Titman (2001) show that the momentum effect, indicated

by the MM strategy, is apparent before and shortly after the 1990s. Our results confirm

this observation. Blitz et al. (2011) find that the RM strategy is less affected by the

market sentiments compared to MM during the financial crisis of 2008. This is in line

with the increased weights for RM in Figure 5.4.3 and its tight CI in Figure 5.4.4c,

which indicate good performance of the RM strategy around 2008. One explanation
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5.4. EMPIRICAL APPLICATION

(a) Combination of VAR-N, SV and DFM(4,2) and two strategies MM and RM.

(b) Combination of DFM-SV(1-4,1-2), VAR-SV and two strategies MM and RM.

(c) Combination of 8 FAVAR-SV models and two strategies MM and RM.

Figure 5.4.4: Strategy weights (posterior means) and 60% credible intervals for FDCs with different sets of models
and strategies.
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for this result is that the RM strategy is intended to take advantage of large residuals

(in absolute sense).

A more detailed analysis of the dynamics and learning of weights is left for further

research. However, it can already be seen that the dynamic patterns in model and

strategy weights are very relevant pieces of information for portfolio analysis. More-

over, the construction of the currently used learning mechanism in the FDC framework

does not allow it to unambiguously assign very low weights to “bad” models. For this

purpose one would need a stronger feedback in the learning scheme. For instance, diag-

nostic information about posterior residual behaviour and poor economic performance

may be useful as a complimentary source of information.

Misspecification and diagnostic learning The model and strategy sets that we

consider are potentially misspecified. An important issue is therefore how to mea-

sure the degree of this misspecification. In the statistical literature there exist several

diagnostic tests and methodologies to determine the correct number of relevant com-

ponents, see McLachlan and Peel (2004, Ch. 6), Frühwirth-Schnatter (2006, Ch. 4) and

for a recent analysis Baştürk et al. (2018). In this chapter, we follow two approaches.

The motivation for the first one stems from the discussed literature in economics and

finance. This approach uses economic interpretation of the results delivered by a set of

models and strategies for trimming of this initial set. For instance, one can account for

the effect of a “bad” model on the total returns, like in the case of the above mentioned

DFM(4,2). The second approach follows from taking a forecasting approach. We ex-

tend the interpretation of σ2
ε from section 5.3.2 to forecast errors and take the standard

deviation of the forecast residuals as a measure of incompleteness. Clearly, even when

the model set is perfectly specified then this measure will be non-zero due to forecast

errors. However, it serves as useful relative measure for comparing the performance of

alternative sets of models and strategies.

Figure 5.4.4 presents the standard deviations of the forecast residuals from the three

considered types of FDCs. Standard deviations from the set of three basic models

and two strategies are generally higher than these from the other two considered sets.

This confirms our earlier conclusion about the better fit of the flexible models com-

pared to the basic models. Regarding the former, the comparison of both flexible

mixtures (VAR-SV and DFM-SV(1-4,1-2) vs FAVAR-SV(1-4,1-2)) does not lead to a

clear conclusion about a specification more robust against model incompleteness. It

is interesting to observe that periods with high standard deviations of residuals, such

as the period 2009–2012, can be caused by high volatility in the data as well as by
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a misspecified model and strategy set. Interestingly, these periods also correspond to

relatively high variations in the weights of strategies. This suggests that in the case

of a misspecified model-strategy set and/or a highly volatile period, it is hard to tell

which model-strategy combination should be followed in order to improve expected

return and risk measures. However, in periods with low standard deviations, which

may be due to low volatility in the markets as well as a more complete model-strategy

set, it is easier to identify a single “winning” strategy.
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FAVAR-SV(1-4, 1-2) and two strategies

Figure 5.4.5: Model and strategy incompleteness measure (standard deviation of residuals).

5.5 Conclusions

We have introduced a dynamic asset-allocation approach specified as a forecast den-

sity combination of a set of models and momentum strategies in which portfolios are

updated at every decision period based on learning about their past performance. To

allow for efficient and robust Bayesian estimation of the resulting nonlinear state space

model, we have introduced a novel non-linear filter based on the MitISEM alogirthm

of Hoogerheide et al. (2012). We have demonstrated that the proposed M-filter leads

to substantial gains in accuracy and computational speed.

Our extensive empirical study based on over 80 years of returns of ten US industries has

revealed several implications for asset allocation. In volatile periods with substantial

shocks it is profitable to make use of models that capture short-run properties through

stochastic volatility components. On the other hand, in quiet periods relatively less

complex models receive substantial weights. Regarding the two momentum strategies,

we have found that in volatile periods a residual momentum strategy which “learns”

from past forecast errors has higher weights compared to the simple model-based mo-

mentum strategy. Thus, a time-varying equity momentum strategy leads to better
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performance over time. In particular, a set of models with different long and short-run

dynamics together with a set of investment strategies improve two key risk measures,

volatility and largest loss, of realized returns.

There are several opportunities to extend this line of research. One can consider a

larger data set of industries and use more (economic) prior information in the model

selection and in the formulation of (informative) prior distributions. This information

may be particularly helpful when one intends to include mean-variance optimization

methods in the analysis. Another possible extension is to assess alternative sets of

combination weights of models and strategies, see also Johnstone (2012). Further,

analysis of the behaviour of stocks within an industry is relevant for a more detailed

portfolio analysis.

Our findings can be beneficial for practitioners, e.g. an investment company, in setting

up their portfolio strategy. Note that the information set upon which we condition our

FDC, i.e. US industrial returns between 1926M7 and 2015M6 and the proposed set of

dynamic models and data driven portfolio strategies, is available to any professional

institution. Conditionally upon this information set, adopting our FDCs with sets of

models and strategies improves the properties of mean return and risk of a portfolio

compared to using single models and strategies, including the standard momentum

strategy. In most cases, the latter yields lower mean returns and more risk. Impor-

tantly, learning weights of the FDCs of sets of models and strategies should be carefully

incorporated in exploring alternative scenarios of portfolio strategies. The proposed

time-varying weights of the set of two flexible models and two strategies outperform the

equally weighted combination of models and strategies in the sense of better return and

risk trade-off. Compared to fixed weights, these gains are rather pronounced in volatile

periods. Finally, we note that how a trader deals with the proposed recommendations

obviously depends on his/her preferences regarding the return-risk trade-off. We do

emphasize, however, that our proposed data-driven FDC approach for combining mod-

els and strategies does not require a fully specified utility function that is particular

for a trader.

Appendix 5.A Models within the FAVAR-SV class

In this section we describe different model structures used in Section 5.1 resulting from

the general formulation (5.1.1).
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5.A.1 Linear and Gaussian dynamic factor model

The linear Gaussian DFM is a special case of model (5.1.1) with β = 0 and a diagonal

Σ matrix:
yt = Λft + εt, εt ∼ N (0,Σ),

ft = φ1ft−1 + · · ·+ φLft−L + ηt, ηt ∼ N (0,Q), (5.A.1)

which is a linear and Gaussian DFM. We estimate this model with the following priors.

1) For the diagonal elements of Σ we set independent Inverse Gamma (IG) priors

σ2
ε,ii ∼ IG

(vi
2
,
si
2

)
,

where we set vi = 2 and si = 5 for i = 1, . . . , N .

2) For the loading parameters we specify normal priors, Λ ∼ N (µ,C), where µ = 0

and C = I.

3) The priors for the autoregressive parameters Φ = [φ1, . . . , φL] and latent errors

variance Q are diffuse conjugate Normal-Wishart:

Φ|Q ∼ N (0,Q⊗ Ω0), Q ∼ IW(Q0, N +K + 2),

where Φ = vec(Φ) consists of the elements of Φ stacked in a column vector of

length L ×K2, where L is the number of lags of the latent factor and K is the

number of factors. As in Bernanke et al. (2005) we set the prior to express the

beliefs that parameters on longer lags are more likely to be zero, in the spirit

of the Minnesota prior. The diagonal elements of Q0 are set to the residual

variances of the corresponding univariate autoregressions, σ̂2
η,kk for k = 1, . . . , K.

The diagonal elements of Ω0 are set on k lagged jth variable in ith equation

equals σ2
i /kσ

2
j .

Defining Λi = (λi,1, . . . , λi,k), for i = 1, . . . , N , we can specify the following Gibbs

sampling scheme.

1) The full conditional posterior for the elements of Σ reduces to a set of N inde-

pendent inverse-gamma distributions with

σ2
ε,ii ∼ IG

(
vi + T

2
,
vis

2
i + di
2

)
,

where di =
∑T

t=1(yit − Λifit)(yit − Λifit)
′
, i = 1, . . . , N .
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2) The draws of the loading parameters which satisfy the related restrictions are

generated as follows.

a) For i = 1, . . . , K, draw Λi ∼ N (mi,Ci)I(λii > 0), where mi = Ci(C
−1
i µ

i
+

σ−2
ε,iif

′
iyi) and C

−1

i = C−1
i + σ−2

ε,iif
′
ifi

b) For i = K+1, . . . , N draw Λi ∼ N (mi,Ci) where mi = Ci(C
−1
i µ

i
+σ−2

ε,iif
′
iyi)

and C
−1

i = C−1
i + σ−2

ε,iif
′
ifi.

3) The posterior of Φ and Q follows from the standard VAR form that we adopt,

which can be estimated equation by equation to yield the following simulation

scheme.

a) Draw Q from IW(Q̂, T + K + N + 2), where Q̂ = Q + Γ̂
′
Γ̂ + Φ̂

′
[Ω0 +

(F̂
′

tF̂t)
−1]−1Φ̂ and Γ̂ is the matrix of OLS residuals.

b) Draw Φ from the conditional normal distribution of the form:

Φ ∼ N (vec(Φ̃),Q⊗ Ω̃), (5.A.2)

where Φ̃ = Ω̃(f̂
′
t−1f̂t−1)Φ̂ and Ω̃ = (Ω−1

0 + f̂
′
t−1f̂t−1)−1.

5) Draw the latent states ft using the FF-BS algorithm as described in Carter and

Kohn (1994).

6) Go to step 1.

5.A.2 Linear dynamic factor model with stochastic volatility)

We obtain the DFM-SV by setting β = 0 in equation (5.1.1):

yt = Λft + εt, εt ∼ N (0,Σt),

ft = φ1ft−1 + · · ·+ φLft−L + ηt, ηt ∼ N (0,Q),
(5.A.3)

and specifying a time-varying variance-covariance matrix:

Σt =


σ2

11,t 0 . . . 0

0 σ2
22,t . . . 0

...
...

. . .
...

0 0 . . . σ2
NN,t

 , i = 1, . . . , N. (5.A.4)

We assume that the log volatilities hit = log(σ2
ii,t) follow a stationary and mean revert-

ing process

hit = µi + ψihit−1 + ζt, ζt ∼ N (0, γii), ψi ∼ U(−1, 1), p(µi) ∝ 1.
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Starting from equation (5.A.3) and rearranging, we get εt = yt−Λft = y∗t . Taking the

squares plus an offset constant we obtain

y∗∗t = log
(
(y∗t )

2 + c̄
)
,

y∗∗t = 2ht + et,

ht = µ+ψht−1 + ξt, ξt ∼ N (0,Γ),

(5.A.5)

where et = log(εt) follows the χ2(1) distribution. Therefore, the standard Kalman

filter and smoother cannot be adopted, see Carter and Kohn (1994). To solve this

problem Kim et al. (1998) employ a data augmentation approach and introduce a new

state variable s1:T = {s1, . . . , st}, so that the linear, non-Gaussian state space model

(5.A.5) can be rewritten as conditionally linear Gaussian. Then, the distribution of et

can be approximated as

et ≈
7∑
j=1

qjN (τj − 1.2704, ν2
j ),

where τj, ν
2
j and qj for j = 1, . . . , 7 are constants specified in Kim et al. (1998).

Conditionally on the state st+1 = j, the errors et can be sampled as

et|st+1 = j ∼ N (τj − 1.2704, ν2
j ),

Pr(st+1 = j) = qj.

The sequence of states st is drawn using

Pr(st = j|y∗∗t ,ht) ∝ qjfN (y∗∗t |2ht + τj − 1.2704, ν2
j ), (5.A.6)

where fN (·) denotes the kernel of a normal density and j = 1, . . . , 7, t = 1, . . . , T .

Conditionally on s1:T the model is linear Gaussian and the algorithm of Carter and

Kohn (1994) can be used.

The priors remains as described before, with the only difference related to the SV

parameters, µ, ψ and variance of the errors Γ. For the two former we specify[
µi

ψi

]
∼ N

([
mµi

mψi

]
,

[
Vµi

0

0 Vψi

])
,

|ψi| < 1,

while for γ−2
ii we put γ−2

ii ∼ G(1/kγ, 1). For the hyperparameters we follow Pettenuzzo
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and Ravazzolo (2016) and set kγ = 0.01, mµi
= 0, mψi

= 0.95, Vµi
= 10 and Vψi

=

1.0e−06. These values imply a strong autocorrelation structure for hit, which is typical

for financial time series.

For this model, the Gibbs sampling steps are as follows.

1) Initialize f
(0)
t , h

(0)
t , Λ

(0)
t ,Σ(0),Q(0).

2) Draw latent factors ft from p(ft|,Λ,Q,Σt,ht) using the FF-BS algorithm de-

scribed in Carter and Kohn (1994).

3) Conditionally on ht and Λ, draw the indicator variable st for the mixture accord-

ing to (5.A.6).

4) Draw a sequence of stochastic volatilities ht, t = 1, . . . , T from p(ht|Λ, ft, st,µ,ψ)

from the conditional linear and Gaussian system using the method of Carter and

Kohn (1994).

5) Draw the stochastic volatility variances γ2
ii from p(γ2

ii|hit, µi, ψi) from the following

posterior:

γ−2
ii ∼ G

[kγ +
∑T−1

t=1 (hit+1 − µi − ψihit)2

t

]−1

, T

 .

6) Draw the SV parameters jointly[
µi
ψi

]
∼ N

([
m̄µi

m̄ψi

]
, V̄(µi,ψi)

)
× |ψi| < 1,

where

V̄(µi,ψi) =

[
V−1
µi

0

0 V−1
ψi

]
+ γ̄−2

ii

T−1∑
t=1

[
1 hit

hit h2
it

]

and [
m̄µi

m̄ψi

]
= V̄(µi,ψi)

([
V−1
µi

0

0 V−1
ψi

][
mµi

mψi

]
+ γ̄−2

ii

T−1∑
t=1

[
1

hit

]
hit+1

)
.

7) Go to step 2.
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5.A.3 Linear dynamic factor model with two stochastic volatil-

ity components

We obtain the DFM model with two stochastic volatilities by assuming β = 0 in

equation (5.1.1) and by defining the following time-varying covariance matrices for the

idiosyncratic and latent errors:

yt = Λft + εt, εt ∼ N (0,Σt),

ft = φ1ft−1 + · · ·+ φLft−L + ηt, ηt ∼ N (0,Qt),
(5.A.7)

with the idiosyncratic errors defined as in equation (5.A.4) and latent error variances

is given by

Qt =


η2

11,t 0 . . . 0

0 η2
22,t . . . 0

...
...

. . .
...

0 0 . . . η2
KK,t

 , i = 1, . . . , K, (5.A.8)

where log volatilities kit = log(η2
ii,t) follow a stationary and mean reverting process:

kit = ωi + βikit−1 + ξit, ξit ∼ N (0, σ2
ξi

).

The estimation of this model proceeds as before with an added step in the Gibbs

sampler to extract the latent time-varying variance.

5.A.4 Factor augmented VAR models with stochastic volatility

components

Assuming in equation (5.1.1) β 6= 0 and a time-varying variance-covariance matrix for

the idiosyncratic and latent errors we obtain the FAVAR-SV2 model given by

yt = βxt + Λft + εt, εt ∼ N (0,Σt),

ft = φ1ft−1 + · · ·+ φLft−L + ηt, ηt ∼ N (0,Qt).
(5.A.9)

The FAVAR model extends the state equation by defining xt as a vector of the lagged

dependent variables. This leads to a VAR form in the state equation of (5.A.9)[
ft

xt

]
= Φ̃1

[
ft−1

xt−1

]
+ · · ·+ Φ̃L

[
ft−L

xt−L

]
+ ε̃t,
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see also Stock and Watson (2005). Conditionally on the latent states, the estimation

of the VAR parameters β is similar to that of the univariate linear regression model,

hence Bayesian inference is standard. The two proposed FAVAR models are defined by

a stochastic volatility component in the idiosyncratic disturbances (FAVAR-SV) and a

stochastic volatility components in the idiosyncratic and latent disturbances (FAVAR-

SV2). Note that the FAVAR-SV (and FAVAR-SV2) model simplifies to a DFM model

in Section 5.A.1 when β = 0, a VAR model if factor coefficient Λ = 0, and a stochastic

volatility model when both β = 0 and Λ = 0. Hence DFM, VAR and SV models listed

together constitute parts of the FAVAR-SV (and FAVAR-SV2) models. We refer to the

earlier sections of this appendix for the inference on the SV components conditionally

on the remaining parameters.
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Appendix 5.B MFilter algorithm

Below we present the details of the recursion for the proposed MFilter from Section 5.3.

In the description we treat the estimated parameter vector θ as known and we omit it

for the sake of notation. For a detailed discussion of the general MitISEM procedure

we refer to Hoogerheide et al. (2012).

1) Initialization. Draw α
(j)
0 ∼ p(α0) for j = 1, . . . ,M .

2) Recursion. For t = 1, . . . , T construct the candidate density gt(αt) using the

MitISEM algorithm as follows.

a) Initialization. Simulate draws α
(j)
t , j = 1, . . . ,M , from a ‘naive’ candidate

distribution with density g
(0)
t (·) (e.g. a Student’s t distribution with v = 5

degrees of freedom).

Compute the corresponding IS weights:

w̃
(j)
t =

p(rt|α(j)
t )p(α

(j)
t |α

(j)
t−1)

g
(0)
t (α

(j)
t )

,

where the target density kernel has the form p(rt|αt)p(αt|α(j)
t−1), and nor-

malize them to w
(j)
t .

b) Adaptation. Use the draws α
(j)
t and the weights w̃

(j)
t from the naive dis-

tribution g
(0)
t (·) to IS estimate the mean and covariance matrix of the target

distribution. Use these estimates as the mode and the scale matrix of the

Student’s t adapted density g
(a)
t (·). Draw a sample α

(j)
t from g

(t)
t (·) and

compute the IS weights for this sample.

c) Apply the the IS weighted EM (ISEM) algorithm given the sample

from g
(a)
t (·) and the corresponding IS weights. The output consists of the

new candidate density with h = 1 component g
(H)
t (·) with the optimized

parameters. Draw a new sample α
(j)
t from this candidate, compute the

corresponding IS weights. Calculate the coefficient of variation CV(H) of

the normalized weights w
(j)
t , j = 1, . . . ,M .

d) Iterate on the number of mixture components. Given the current

mixture of h components g
(H)
t (·) add the next component to the mixture in

the following way.

d.1) Use a chosen fraction (e.g. 0.1) of the draws α
(j)
t from the current

mixture corresponding to the highest IS weights to IS estimate the mean

and variance. Use these parameters as the starting mode and scale

parameters for the new mixture component, µh+1 and Σh+1.
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d.2) Update the mixture probabilities: assign the starting value for the new

component probability ηh+1 (e.q. 0.1) and multiply the old mixture

probabilities η1, . . . , ηh by (1 − ηh+1). Set the number of degrees of

freedom for the new component νh to a specified fixed value (e.g. 5).

d.3) Given the starting parameters of the new mixture, adapt the candidate

for the model parameters by performing ISEM based on the draws from

the previous mixture g
(H)
t (·) and the corresponding weights.

d.4) Draw α
(j)
t from the new mixture g

(h+1)
t (·) and evaluate the correspond-

ing normalized importance weights w
(j)
t , j = 1, . . . ,M .

d.5) Calculate the coefficient of variation CV(h+1) of the normalized weights

w
(j)
t , j = 1, . . . ,M .

e) Assess convergence of the candidate density’s quality by inspecting whether

the relative change between CV(H) and CV(h+1) is greater than the chosen

threshold (e.g. 0.01) and return to step d) unless the algorithm has con-

verged.

3) Draws. Draw α
(j)
t from the constructed density g

(H)
t (α

(j)
t |α

(j)
t−1) and approximate

E[ht(αt)|r1:T ] by:

ĥ(αt) =
M∑
j=1

w
(j)
t h(α

(j)
t ).

4) Likelihood Approximation. The approximation of the log likelihood function

is given by:

log p̂(r1:T ) =
T∑
t=1

log

(
1

M

M∑
j=1

w̃
(j)
t

)
.
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Appendix 5.C Simulation results for MFilter

Below we report simulation results confirming a good statistical performance of the

MFilter. In all the examples we are interested in the estimation of the target function

ht(α
(j)
t ) = αt that is the posterior mean of the latent state. We compare four filters,

the Kalman filter (KF), the Bootstrap Particle Filter (BPF), the Auxiliary Particle

filter (APF) and the MFilter. All the Monte Carlo (MC) experiments presented in this

section are based on R = 100 replications with T = 100 observations each. For the

BPF, APF and MFilter we use M = 50, 000 particles. In the MFilter the particles

correspond to draws from the proposal density.

To quantify the performance of the filters we consider three measures: loglikelihood bias

(LLB), absolute deviation (Bias) and variability (Var), with the two latter measures

defined as

Bias =
1

T

T∑
t=1

(
1

R

R∑
i=1

|α̃t,i − αt,i|

)
,

Var =
1

T

T∑
t=1

(
1

R

R∑
i=1

(α̃t,i − αt,i)2

)
,

where α̃t,i is the estimated posterior mean of the state at time t from the ith replication.

We present the results with respect to the KF (applied to the original or the transformed

model) and report LLB only for the local level model and the dynamic factor models

(where the loglikelihood is available in a closed form).

5.C.1 Local level model

The first model we consider is a standard local level model:

yt = αt + εt, εt ∼ N (0, σ2
ε),

αt = αt−1 + ηt, ηt ∼ N (0, σ2
η),

(5.C.1)

which is a linear and Gaussian model often used as benchmark for comparing filtering

methods. In this case KF provides the sequential state distribution in analytical form

and is the optimal filter.

In the simulations experiments, we fix the latent state variance at σ2
η = 0.1 and we

define four different levels for the state variance σ2
ε , corresponding to four levels of the

Noise to Signal Ratio (NtS): 0.1, 0.5, 1 and 2.5. We note that the exact likelihood of
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the model in equation (5.C.1) can be calculated using the KF, and we can compare

the exact likelihood of this model with the remaining non-linear filters. This allows to

assess the degree of the likelihood bias in the non-linear filters, including the proposed

MFilter.

Table 5.C.1 reports the results for the model in equation (5.C.1). KF filter is the best

filter, as expected, in terms of the minimum bias and the smallest computing time.

The results of the non-linear filters, however, are in line with those of KF in terms of

the bias measures. The proposed MFilter performs similarly to the BPF and the APF

but has a lower bias in the estimate likelihood especially for smallest NtS ratio of 0.1.

In all cases the computing time is lower then the BPF and APF.

NtS 0.1 0.5 Time
Model LLB Bias Var LLB Bias Var 0.1 0.5
KF 0.00 1.00 1.00 0.00 1.00 1.00 0.01 0.01
BPF -48.93 1.22 1.48 -19.43 1.26 1.62 33.71 35.55
APF -13.87 1.00 1.00 -9.56 1.01 1.02 35.54 37.67
MFilter -10.40 1.00 1.01 -9.52 1.01 1.02 12.83 12.81

NtS 1 2.5 Time
Model LLB Bias Var LLB Bias Var 1 2.5
KF 0.00 1.00 1.00 0.00 1.00 1.00 0.01 0.01
BPF -37.85 1.31 1.71 -21.16 1.43 2.04 35.22 34.53
APF -10.43 1.00 1.00 -9.05 1.00 1.00 37.29 35.72
MFilter -10.18 1.01 1.01 -9.39 1.00 1.01 12.67 12.13

Table 5.C.1: MC results for the linear and Gaussian model (5.C.1). Loglikelihood Bias (LLB), absolute deviation
(Bias) and variability (Var) with respect to the KF. Final column: computing time in seconds for different NtS.

5.C.2 Stochastic volatility model

The second model is the SV model of Kim et al. (1998) given by

yt = exp (αt/2) εt, εt ∼ N (0, σ2
ε),

αt = µ+ φαt−1 + ηt, ηt ∼ N (0, σ2
η),

(5.C.2)

where ηt and εt are independent and yt is the observed series. Due to the non-linear

structure of the observation equation the analytical form for filtering and predictive

densities do not exist in this model.

In the simulations, we fix the autoregressive parameter φ to 0.90, 0.95, and 0.98, which

are in line with the values found in other studies, see for example Aguilar and West
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(2000). For each value of φ we consider four values of σ2
η, that correspond to different

coefficient of variation (CV) of the volatility h = σ2
η exp(αt) defined as:

CV =
Var(h)

E(h)2
= exp

(
σ2
η

1− φ2

)
− 1.

The CV takes values 0.1, 0.5, 1, and 2.5 where high values indicate more strength of

the volatility process and low values indicate that the volatility is close to a constant.

Table 5.C.2 reports the results for the SV model of equation (5.C.2) with φ = 0.98 and

different values of σ2
η that corresponds to CV = 0.1, 0.5, 1, 2. In all cases the KF is the

worst filter due to being a linear and Gaussian filter. The MFilter performs similarly

to the BPF and the APF in term of bias and estimation variability. In this model the

computational speed is comparable between the three non-linear filters, namely BPF,

APF and MFilter.

CV 0.1 0.5 Time
Model Bias Var Bias Var 0.1 0.5
KF 1.00 1.00 1.00 1.00 0.01 0.01
BPF 0.24 0.10 0.31 0.12 13.82 13.99
APF 0.25 0.10 0.31 0.13 14.58 14.66
MFilter 0.26 0.10 0.31 0.14 14.15 12.67

CV 1.0 2.5 Time
Model Bias Var Bias Var 1 2.5
KF 1.00 1.00 1.00 1.00 0.01 0.01
BPF 0.32 0.12 0.29 0.11 13.98 13.88
APF 0.31 0.13 0.29 0.11 14.61 14.70
MFilter 0.30 0.13 0.28 0.11 13.54 12.96

Table 5.C.2: MC results for the SV model (5.C.2) with φ = 0.98 and CV = 0.1, 0.5, 1, 2.5. Absolute deviation (Bias)
and variability (Var) with respect to the KF. Final column: computing time in seconds with different CV.

5.C.3 Dynamic factor model

The last model we examine is a DFM given by

yt = Λft + εt, εt ∼ N (0,Σ),

ft = Φ1ft−1 + ηt, ηt ∼ N (0,Q),
(5.C.3)

where yt is a N × 1 vector of time series,the K × 1 vector ft contains unobservable

factors with one lag where Φ1 is a K ×K matrix of autoregressive coefficients, Λ is an
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N ×K matrix of factor loadings. Finally, εt is an N × 1 i.i.d. vector of idiosyncratic

disturbances and ηt is an K × 1 i.i.d. vector of latent disturbances.

The model in equation (5.C.3) is linear and Gaussian and as in equation (5.C.1) the

KF is the optimal filter. As before we compare the performance of the non-linear filters

against the KF for different number of factors.

Table 5.C.3 reports the results for the model in equation (5.C.3) for R = 100 MC

replication, N = 20 series and K = 2, 4, 6, 10 factors. In all simulation experiments the

following simulation setting is used: Λ is a N×K matrix with zeros on the K×(K−1)/2

upper-diagonal elements and the remaining elements being i.i.d. standard normal; Φ1

is a diagonal matrix with elements being i.i.d. uniform on [0, 1); Σ is a diagonal matrix

with elements being i.i.d. uniform on [0, 2.5]; Q is a diagonal matrix for which the

simulations are performed in two steps. First, we simulate Q̃ = ΨΨ′ where Ψ is a

K × K upper triangular matrix with elements simulated from independent uniform

distributions in [0, 1]. The diagonal elements of Q are defined as the diagonal elements

of 0.1 × Q̃
−1

. We note that our general conclusions hold under different parameter

values such as Φ1 = 0.9 as well as for different specifications for the non-zero elements

of Λ.

Due to the linear Gaussian model structure in equation (5.C.3), the KF leads to the

best results in terms of the speed and accuracy, but the non-linear filters are in line with

the KF. The MFilter performs better than both the BPF and APF, with substantially

lower bias and variance. The MFilter has also the lowest likelihood bias compared

to the other nonlinear non-Gaussian filters. For all the filters the computing time

increases with the number of factors. In all the cases, however, the MFilter requires

less computing time than the BPF and APF.

Factors 2 4 Time
Model LLB Bias Var LLB Bias Var 2 4
KF 0 1 1 0 1 1 0.01 0.01
BPF -77.42 1.15 1.33 -145.49 1.15 1.32 708.79 811.73
APF -39.98 1.03 1.05 -164.80 1.05 1.05 836.69 878.13
MFilter -23.23 1.01 1.02 -23.39 1.00 1.01 106.33 138.18

Factors 6 10 Time
Model LLB Bias Var LLB Bias Var 6 10
KF 0.00 1.00 1.00 0.00 1.00 1.00 0.02 0.02
BPF -193.74 1.16 1.31 -333.33 1.27 1.65 861.10 897.86
APF -309.26 1.07 1.12 -568.18 1.08 1.18 953.72 1011.21
MFilter -16.97 1.03 1.03 -112.68 1.02 1.03 213.20 402.82

Table 5.C.3: MC results for the DFM with N = 20 and K = 2, 4, 6, 10 latent factors. Loglikelihood Bias (LLB),
absolute deviation and variability with respect to the KF. Final column: computing time in seconds with K = 2, 4, 6, 10.

204



5.D. ADDITIONAL EMPIRICAL RESULTS

Appendix 5.D Additional empirical results

5.D.1 Individual model-strategy pairs

Table 5.D.1 presents detailed results on the properties of the realised returns from 86

individual combinations of models and strategies, which are summarised in the main

text in Table 5.4.3.

5.D.2 Combinations of model-strategy pairs

Table 5.D.2 presents the detailed results for the third stage of the analysis in Subsection

5.4.2, i.e. for the combination of very flexible FAVAR-SV models and the two strategies

(MM and RM).
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MM RM
(K, L) Mean Vol. SR LL Mean Vol. SR LL

VAR-N − 0.02 5.0 0.005 -24.1 0.09 5.8 0.015 -35.0
SV − 0.10 5.1 0.019 -34.7 0.11 5.6 0.019 -26.0

VAR-SV − 0.12 4.5 0.028 -20.2 0.13 5.8 0.021 -37.4

D
F

M
-N

(1,1) -0.04 4.9 -0.009 -20.0 0.13 5.7 0.023 -34.4
(1,2) -0.04 4.9 -0.009 -20.0 0.13 5.7 0.022 -34.4
(2,1) -0.13 5.2 -0.024 -25.4 0.10 5.6 0.017 -34.0
(2,2) -0.11 5.2 -0.020 -24.2 0.10 5.6 0.017 -34.1
(3,1) -0.14 5.4 -0.027 -23.7 0.09 5.5 0.017 -33.7
(3,2) -0.08 5.4 -0.016 -23.3 0.08 5.4 0.015 -33.1
(4,1) -0.07 5.5 -0.013 -26.7 0.10 5.4 0.018 -31.3
(4,2) -0.05 5.5 -0.009 -27.4 0.12 5.4 0.022 -31.1

D
F

M
-S

V

(1,1) 0.04 5.0 0.007 -20.0 0.11 5.8 0.019 -37.1
(1,2) 0.04 5.0 0.008 -20.0 0.10 5.8 0.018 -37.1
(2,1) -0.04 5.2 -0.009 -22.0 0.15 5.7 0.026 -36.3
(2,2) -0.05 5.2 -0.009 -22.0 0.15 5.7 0.027 -36.6
(3,1) 0.00 5.2 0.000 -21.2 0.14 5.4 0.026 -33.0
(3,2) 0.03 5.2 0.005 -20.8 0.16 5.4 0.030 -32.8
(4,1) 0.12 5.4 0.023 -20.8 0.05 5.4 0.009 -31.8
(4,2) 0.12 5.4 0.023 -21.7 0.06 5.4 0.011 -31.1

D
F

M
-S

V
2

(1,1) 0.07 4.6 0.014 -18.2 0.06 5.5 0.010 -37.4
(1,2) 0.07 4.6 0.014 -18.2 0.06 5.5 0.010 -37.4
(2,1) -0.01 4.8 -0.002 -22.8 0.08 5.5 0.015 -37.4
(2,2) -0.02 4.8 -0.003 -22.8 0.09 5.5 0.016 -37.4
(3,1) 0.02 5.0 0.005 -27.1 -0.02 5.5 -0.003 -37.4
(3,2) 0.03 5.0 0.006 -27.1 -0.02 5.5 -0.003 -37.4
(4,1) 0.07 5.7 0.013 -32.3 0.00 5.2 0.000 -37.4
(4,2) 0.07 5.7 0.013 -32.3 0.00 5.2 0.000 -37.4

F
A

V
A

R
-S

V

(1,1) 0.08 4.6 0.018 -18.3 0.06 5.5 0.011 -37.4
(1,2) 0.08 4.6 0.018 -18.3 0.06 5.5 0.011 -37.4
(2,1) -0.03 4.9 -0.005 -23.1 0.08 5.5 0.015 -37.4
(2,2) -0.03 4.9 -0.006 -23.5 0.09 5.5 0.016 -37.4
(3,1) 0.09 5.0 0.018 -25.3 -0.02 5.5 -0.005 -37.4
(3,2) 0.08 5.0 0.017 -25.7 -0.02 5.5 -0.004 -37.4
(4,1) 0.08 5.7 0.014 -32.3 0.03 5.2 0.005 -37.4
(4,2) 0.08 5.7 0.015 -32.3 0.02 5.2 0.005 -37.4

F
A

V
A

R
-S

V
2

(1,1) 0.09 4.6 0.019 -18.3 0.06 5.5 0.011 -37.4
(1,2) 0.08 4.6 0.018 -18.3 0.06 5.5 0.011 -37.4
(2,1) -0.03 4.9 -0.005 -23.5 0.09 5.5 0.016 -37.4
(2,2) -0.03 4.9 -0.005 -23.8 0.08 5.5 0.015 -37.4
(3,1) 0.08 5.0 0.017 -25.6 -0.03 5.5 -0.005 -37.4
(3,2) 0.08 5.0 0.017 -25.3 -0.02 5.5 -0.004 -37.4
(4,1) 0.08 5.7 0.014 -32.3 0.03 5.2 0.005 -37.4
(4,2) 0.08 5.7 0.014 -32.3 0.03 5.2 0.005 -37.4

Table 5.D.1: Mean returns and risk measures (volatility [Vol.], Sharpe Ratio [SR], and the largest loss [LL]) for the
realised return densities from all model-strategy pairs, with models from Section 5.1 and strategies being MM and RM.
Measures from the SM strategy: mean 0.09, volatility 5.7, Sharpe ratio 0.02 and largest loss -26.2. Bold values: an
‘equal or better’ value compared to SM. K: the number of factors, L: the number of lags.

206



5.D. ADDITIONAL EMPIRICAL RESULTS

Model Strategy Mean Vol. SR LL

Combination of component models and two strategies

FAVAR-SV(1-4, 1-2) MM & RM 0.18 4.5 0.039 -34.8
(0.14, 0.22) (4.5, 4.6) (0.031, 0.048) (-35.0, -34.6)

Combination of two strategies per component model

FAVAR-SV(1, 1) MM & RM 0.11 4.5 0.024 -33.8
(0.02, 0.19) (4.4, 4.6) (0.004, 0.042) (-34.0, -33.1)

FAVAR-SV(1, 2) MM & RM 0.11 4.5 0.023 -34.2
(0.02, 0.19) (4.4, 4.6) (0.004, 0.042) (-34.4, -33.6)

FAVAR-SV(2, 1) MM & RM 0.14 5.1 0.027 -37.1
(0.05, 0.22) (5.0, 5.2) (0.010, 0.043) (-37.2, -36.9)

FAVAR-SV(2, 2) MM & RM 0.14 5.1 0.027 -37.1
(0.05, 0.22) (5.0, 5.2) (0.010, 0.044) (-37.2, -36.8)

FAVAR-SV(3, 1) MM & RM 0.15 4.7 0.033 -34.1
(0.07, 0.25) (4.5, 4.9) (0.014, 0.054) (-34.3, -34)

FAVAR-SV(3, 2) MM & RM 0.14 4.7 0.031 -34.4
(0.05, 0.25) (4.6, 4.9) (0.011, 0.052) (-34.5, -34.2)

FAVAR-SV(4, 1) MM & RM 0.11 5.1 0.022 -31.3
(0.02, 0.20) (5.0, 5.2) (0.004, 0.040) (-31.8, -31.1)

FAVAR-SV(4, 2) MM & RM 0.12 5.1 0.023 -31.5
(0.03, 0.21) (5.0, 5.2) (0.005, 0.040) (-32.4, -31.3)

Table 5.D.2: Mean returns and risk measures (volatility [Vol.], Sharpe Ratio [SR], and the largest loss [LL]) for the
realised return densities from combinations of flexible parametric models and two investment strategies. Top panel:
results for the combination consisting of flexible models FAVAR-SV(1-4,1-2) and two investment strategies (MM, RM).
Bottom panel: results for the combination of two investment strategies combined with each component model separately.
Measures from the SM strategy: mean 0.09, volatility 5.7, Sharpe ratio 0.02 and largest loss -26.2. Bold values: an
‘equal or better’ value compared to SM. 90% CI in parentheses.
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Chapter 6

Summaries

6.1 English summary

This thesis investigates Bayesian inference over time series models with the emphasis

put on applications in economics and finance. We adopt simulation-based techniques

which are necessary in any nontrivial problem in this setting. The main motivation

behind the presented research is to increase the efficiency and accuracy of these com-

putationally intensive methods in several different contexts. One of the main topics

addressed is efficient and precise risk estimation, or rare event analysis. Another prob-

lem studied in this thesis is the efficiency of various sampling algorithms, in particular

importance sampling (IS) and Markov chain Monte Carlo (MCMC) algorithms. Finally,

we address the issue of forecasting, from a single model as well as from a combination

of models.

In Chapter 2 we present an accurate and efficient method for Bayesian estimation of

two financial risk measures, Value-at-Risk and Expected Shortfall, for a given volatility

model. We obtain precise forecasts of the tail of the distribution of returns not only

for the 10-days-ahead horizon required by the Basel Committee but even for long

horizons, like one-month or one-year ahead. The key insight behind our proposed IS

based approach is the sequential construction of marginal and conditional importance

densities for consecutive periods. By oversampling the extremely negative scenarios

and giving them lower importance weights, we achieve a much higher precision in

characterising the properties of the left tail.

In Chapter 3 we introduce a novel approach to inference for a specific region of the

predictive distribution. An important domain of application is accurate prediction
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of financial risk measures, where the area of interest is the left tail of the predictive

density of logreturns. Our proposed approach originates from the Bayesian approach to

parameter estimation and time series forecasting, however it is robust in the sense that

it provides a more accurate estimation of the predictive density in the region of interest

in case of misspecification. The main contribution of this chapter is the novel concept

of the partially censored posterior, where the set of model parameters is partitioned

into two subsets: for the first subset of parameters we consider the standard marginal

posterior, for the second subset of parameters (that are particularly related to the

region of interest) we consider the conditional censored posterior. This approach yields

more precise parameter estimation than a fully censored posterior for all parameters,

and has more focus on the region of interest than a standard Bayesian approach.

In Chapter 4 we develop a novel efficient model-fitting algorithm for state space models.

This flexible class of models is challenging due to their substantially more complicated

fitting to data as the associated likelihood is typically analytically intractable. For

the general case a Bayesian data augmentation approach is often employed, however,

standard “vanilla” updating MCMC algorithms may perform very poorly in that case.

This it due to high correlation between the imputed states and/or parameters and

leads to the need for specialist algorithms. A Semi-Complete Data Augmentation

algorithm circumvents the inefficiencies of the previous approaches by combining data

augmentation with numerical integration in a Bayesian hybrid approach. This approach

permits the use of standard “vanilla” updating algorithms that perform considerably

better than the traditional approach in terms of considerably improved mixing and

hence lower autocorrelation.

In Chapter 5 we propose a novel dynamic asset allocation approach in which model-

based forecasts are directly combined with a set of data driven portfolio strategies,

without the necessity to define a utility or other scoring function. The resulting dy-

namic asset-allocation model is specified as a combination of return distributions stem-

ming from multiple pairs of models and strategies. The combination weights are defined

through feedback mechanisms that enable learning, to allow for cross-correlation and

correlation over time. To increase the efficiency and robustness of the simulations

we introduce a new nonlinear filter based on mixtures of Student’s t distributions.

Diagnostic analysis of posterior residuals gives insight into the model and strategy

incompleteness or misspecification.
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6.2 Nederlandse samenvatting

Dit proefschrift onderzoekt de Bayesiaanse inferentie over tijdreeksmodellen met de

nadruk op economische en financiële toepassingen. We passen simulatietechnieken toe.

De belangrijkste motivatie achter het gepresenteerde onderzoek is om de efficiëntie en

nauwkeurigheid van deze rekenintensieve methoden te verhogen. Een van de belangrijk-

ste onderwerpen die worden behandeld is een efficiënte en nauwkeurige risicoschatting,

of een analyse van zeldzame gebeurtenissen. Een ander probleem dat in dit proef-

schrift wordt bestudeerd, is de efficiëntie van verschillende simulatie algoritmen, met

name Importance Sampling (IS) en Markov-keten Monte Carlo (MCMC) algoritmen.

Ten slotte behandelen we het probleem van sta:s:sche voorspellingen, zowel met behulp

van een enkel model als van een combinatie van modellen.

In Hoofdstuk 2 presenteren we een nauwkeurige en efficiënte methode voor de Bayesi-

aanse schatting van twee financiële risicomaatstaven, Value-at-Risk en Expected Short-

fall, voor een gegeven volatiliteitsmodel. We krijgen nauwkeurige voorspellingen van

de staart van de verdeling van de rendementen, niet alleen voor de horizon van 10

dagen vooruit die het Bazels Comité nodig heeft, maar zelfs voor een lange horizon,

zoals een maand of een jaar vooruit. Het belangrijkste inzicht achter onze voorgestelde

op IS gebaseerde aanpak is de sequentiële constructie van marginale en conditionele

“importance” dichtheden voor ’opeenvolgende perioden. Door de extreem negatieve

scenario’s te vervangen en deze lage belangrijkheidsgewichten te geven, bereiken we een

veel hogere precisie bij het karakteriseren van de eigenschappen van de linkerstaart.

In Hoofdstuk 3 introduceren we een nieuwe benadering van inferentie voor een speci-

fieke regio van de voorspellende verdeling. Een belangrijke toepassing is het nauwkeurig

voorspellen van financiële risicomaatstaven, waarbij het aandachtsgebied is de linker

staart van de verdeling van logreturns. Wij volgen de Bayesiaanse benadering van

parameterschatting en tijdreeksvoorspelling. De methode is robuust in de zin dat het

een nauwkeuriger schatting geeft van de voorspellende dichtheid in het gebied. Maar

de belangrijkste bijdrage van dit hoofdstuk is het nieuwe concept van de gedeeltelijk

gecensureerde posterior, waarbij de set modelparameters is verdeeld in twee subsets:

voor de eerste subset van parameters beschouwen we de standaard marginale poste-

rior, voor de tweede subset van parameters beschouwen we de voorwaardelijke gecen-

sureerde posterior. Deze benadering levert nauwkeuriger schattingen van de parameters

op, nauwkeuriger dan met een volledig gecensureerde posterior voor alle parameters.

Daarnaast heeft deze methode meer aandacht voor het “importance” gebied dan een

standaard Bayesiaanse benadering.
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In Hoofdstuk 4 ontwikkelen we een nieuw efficiënt algoritme voor state space-modellen.

Deze flexibele klasse van modellen is een uitdaging vanwege hun aanzienlijk gecom-

pliceerdere aanpassing aan gegevens, omdat de bijbehorende loglikelihood doorgaans

geen analytische oplossing heeft. Voor het algemene geval wordt vaak een Bayesiaanse

methode voor data augmentation gebruikt, maar standaard MCMC algoritmen kunnen

in dat geval zeer slecht presteren, voornamelijk vanwege de hoge correlatie tussen de

gëımputeerde states. Dit leidt tot de noodzaak om gespecialiseerde algoritmen te on-

twikkelen. Het voorgestelde Semi-Complete Data Augmentation-algoritme omzeilt de

inefficiënties van de eerdere benaderingen door data-augmentatie te combineren met

numerieke integratie in een Bayesiaanse hybride aanpak. Met deze aanpak kunnen

standaard algoritmen worden toegepast voor het bijwerken van de gëımputeerde states

die aanzienlijk beter presteren dan de traditionele aanpak.

In Hoofdstuk 5 stellen we een nieuwe benadering voor van dynamische activaspreiding

waarbij model-prognoses direct worden gecombineerd met een reeks van portfoliostrate-

gieën, zonder de noodzaak om een utiliteits- of andere score-functie te definiëren. Het

resulterende dynamische model wordt gespecificeerd als een combinatie van rendement-

verdelingen die afkomstig zijn van meerdere paren van modellen en strategieën. De

combinatiegewichten worden gedefinieerd via feedback-mechanismen en worden steeds

aangepast. Om de efficiëntie en robuustheid van de simulaties te vergroten, introduc-

eren we een nieuw niet-lineair filter op basis van een mix van Student t verdelingen.

Diagnostische analyse van de residuen geeft inzicht in de incompleetheid of verkeerde

specificatie van het model.

212



Bibliography

Aastveit, K. A., L. Hoogerheide, J. Mitchell, and H. K. van Dijk (2018a), “Struc-
ture and Workings of Density Forecast Combinations in Economics.” Unpublished
manuscript.

Aastveit, K. A., J. Mitchell, F. Ravazzolo, and H. K. van Dijk (2018b), “The Evolution
of Forecast Density Combinations in Economics.” To appear in Oxford Research
Encyclopedia of Economics and Finance.

Abadi, F., O. Gimenez, B. Ullrich, R. Arlettaz, and M. Schaub (2010), “Estimation of
Immigration Rate using Integrated Population Models.” Journal of Applied Ecology,
393–400.

Aguilar, O. and M. West (2000), “Bayesian Dynamic Factor Models and Portfolio
Allocation.” Journal of Business & Economic Statistics, 18, 338–357.

Amisano, G. and R. Giacomini (2007), “Comparing Density Forecasts via Weighted
Likelihood Ratio Tests.” Journal of Business and Economic Statistics, 25, 177–190.

Andrieu, C., A. Doucet, and R. Holenstein (2010), “Particle Markov Chain Monte
Carlo Methods.” Journal of the Royal Statistical Society Series B, 72, 269–342.

Andrieu, C. and G. Roberts (2009), “The Pseudo-Marginal Approach for Efficient
Monte Carlo Computations.” Annals of Statistics, 37, 697–725.

Artzner, P., F. Delbaen, J. M. Eber, and D. Heath (1999), “Coherent Measures of
Risk.” Mathematical Finance, 9, 203–228.

Asness, C. S., T. J. Moskowitz, and L. H. Pedersen (2013), “Value and Momentum
Everywhere.” The Journal of Finance, 68, 929–985.

Baştürk, N., A. Borowska, S. Grassi, L. Hoogerheide, and H. K. van Dijk (2018), “Fore-
cast Density Combinations of Dynamic Models and Data Driven Portfolio Strate-
gies.” Journal of Econometrics, 210, 170–186.
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722 N. CIURILĂ, Risk Sharing Properties and Labor Supply Disincentives of Pay-

As-You-Go Pension Systems

723 N.M. BOSCH, Empirical Studies on Tax Incentives and Labour Market Be-

haviour

724 S.D. JAGAU, Listen to the Sirens: Understanding Psychological Mechanisms

with Theory and Experimental Tests

725 S. ALBRECHT, Empirical Studies in Labour and Migration Economics

726 Y.ZHU, On the Effects of CEO Compensation

727 S. XIA, Essays on Markets for CEOs and Financial Analysts

728 I. SAKALAUSKAITE, Essays on Malpractice in Finance

729 M.M. GARDBERG, Financial Integration and Global Imbalances
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